Advertisement

A gait transition algorithm based on hybrid walking gait for a quadruped walking robot

  • 672 Accesses

  • 7 Citations

Abstract

This paper presents a quasi-dynamic gait, called Hybrid Walking Gait, and a new gait transition algorithm for a quadruped walking robot. The Hybrid Walking gait reduces the steps of a generic walking gait with primitive foot trajectory generation using some of parameters easily defined. It shows great improvements over existing ones in terms of higher mobility, less complexity to define the motion, and smooth body movements that affect to the stability of the robot. The Gait Transition pattern generated with the Hybrid Walking Gait guarantees stability as good as that of a traditional walking gait and high mobility such as the dynamic trot gait. We perform experiments with a quadruped robot called “Artificial Digitigrade for Natural Environments Version III”, and validate the effectiveness of our proposed gait patterns over several types of terrains.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    MacKay-Lyons M (2002) Central pattern generation of locomotion: a review of the evidence. Phys Ther 82:69–83

  2. 2.

    Hooper SL (2001) Central pattern generators. Nature Encycl Life Sci. doi:10.1038/npg.els.0000032

  3. 3.

    Matsuoka K (1985) Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol Cybern 52:367–376. doi:10.1007/BF00449593

  4. 4.

    Matsuoka K (1987) Mechanisms of frequency and pattern control in the neural rhythm generators. Biol Cyber 56:345–353. doi:10.1007/BF00319514

  5. 5.

    Fukuoka Y, Kimura H, Cohen AH (2003) Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. Int J Robotics Res 22:187–202. doi:10.1177/0278364903022003004

  6. 6.

    Kimura H, Fukuoka Y, Cohen AH (2007) Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. Int J Robotics Res 26:475–490. doi:10.1177/0278364907078089

  7. 7.

    Bailey SA (2004) Biomimetic control with a feedback coupled nonlinear oscillator: insect experiments, design tools, and hexapedal robot adaptation results. Dissertation, Stanford University

  8. 8.

    Liu C, Chen Q, Wang D (2011) CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots. Systems Man Cybern Part B Cybern IEEE Trans 41:867–880. doi:10.1109/TSMCB.2010.2097589

  9. 9.

    Sousa J, Matos V, Peixoto dos Santos C (2010) A bio-inspired postural control for a quadruped robot: an attractor-based dynamics. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 53295334. IEEE. doi:10.1109/IROS.2010.5648945

  10. 10.

    Matos V, Santos CP (2010) Omnidirectional locomotion in a quadruped robot: a cpg-based approach. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 3392–3397. IEEE. doi:10.1109/IROS.2010.5652667

  11. 11.

    Santos CP, Matos V (2012) CPG modulation for navigation and omnidirectional quadruped locomotion. Robotics Auton Syst 60:912–927. doi:10.1016/j.robot.2012.01.004

  12. 12.

    Matos V, Santos CP, Pinto CM (2009) A brainstem-like modulation approach for gait transition in a quadruped robot. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 2665–2670. IEEE. doi:10.1109/IROS.2009.5354318

  13. 13.

    Aoi S, Tsuchiya K (2006) Stability analysis of a simple walking model driven by an oscillator with a phase reset using sensory feedback. Robotics IEEE Trans 22:391–397. doi:10.1109/TRO.2006.870671

  14. 14.

    Aoi S, Yamashita T, Ichikawa A, Tsuchiya K (2010) Hysteresis in gait transition induced by changing waist joint stiffness of a quadruped robot driven by nonlinear oscillators with phase resetting. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1915–1920. IEEE. doi:10.1109/IROS.2010.5650447

  15. 15.

    Ma S, Tomiyama T, Wada H (2002) Omni-directional walking of a quadruped robot. In: Intelligent IEEE/RSJ international conference on robots and systems (ICRA) pp 2605–2612. IEEE. doi:10.1109/IRDS.2002.1041663

  16. 16.

    Masakado S, Ishii T, Ishii K (2005) A gait-transition method for a quadruped walking robot. In: IEEE/ASME international conference on advanced intelligent mechatronics (AIM), pp 432–437. IEEE. doi:10.1109/AIM.2005.1501029

  17. 17.

    Alexander RM (1984) The gaits of bipedal and quadrupedal animals. Int J Robotics Res 3:49–59. doi:10.1177/027836498400300205

  18. 18.

    Kumar VR, Waldron KJ (1989) Adaptive gait control for a walking robot. J Robotic Syst 6:49–76. doi:10.1002/rob.4620060105

  19. 19.

    Song SM, Waldron KJ (1989) Machines that walk: the adaptive suspension vehicle. MIT press, Cambridge

  20. 20.

    Muybridge E (1957) Animals in motion. Courier Dover Publications, NY

  21. 21.

    Tran DT (2012) Control of dynamic walking of quadruped robots on unknown rough terrains. Dissertation, Sunkyunkwan University, Korea

  22. 22.

    Alexander R (1980) Optimum walking techniques for quadrupeds and bipeds. J Zool 192:97–117. doi:10.1111/j.1469-7998.1980.tb04222.x

  23. 23.

    Alexander RM (2003) Principles of animal locomotion. Princeton University Press, NJ

  24. 24.

    Chen JJ, Peattie AM, Autumn K, Full RJ (2006) Differential leg function in a sprawled-posture quadrupedal trotter. J Exp Biol 209:249–259. doi:10.1242/jeb.01979

  25. 25.

    Tran DT, Koo IM, Lee YH, Moon H, Koo JC, Park S, Choi HR (2014) Motion control of a quadruped robot in unknown rough terrain using 3D spring damper leg model. Int J Control Autom Syst 12:372–382

  26. 26.

    Koo IM, Tran DT, Lee YH, Moon H, Koo JC, Park S, Choi HR (2013) Development of a quadruped walking robot AiDIN-III using biologically inspired kinematic analysis. Int J Control Autom Syst 11:1276–1289. doi:10.1007/s12555-013-0020-1

  27. 27.

    Harris SE, De Ruffieu FL (1993) Horse gaits, balance and movement. Howell Book House, NJ

  28. 28.

    de Santos PG, Garcia E, Estremera J (2007) Quadrupedal locomotion: an introduction to the control of four-legged robots. Springer Science & Business Media, New York

  29. 29.

    Koo IM, Tran DT, Lee YH, Moon H, Koo J, Park S, Choi HR (2015) Biologically inspired gait transition control for a quadruped walking robot. Auton Robots. doi:10.1007/s10514-015-9433-4

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP)(No.2014R1A2A2A01005241) and the GRRC program of Gyeonggi province (GRRCSKKU2014-B03).

Author information

Correspondence to Hyouk Ryeol Choi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 356035 KB)

Supplementary material 1 (mp4 356035 KB)

Supplementary material 2 (mp4 13962 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.H., Tran, D.T., Hyun, J. et al. A gait transition algorithm based on hybrid walking gait for a quadruped walking robot. Intel Serv Robotics 8, 185–200 (2015). https://doi.org/10.1007/s11370-015-0173-2

Download citation

Keywords

  • Quadruped walking robot
  • Legged robot
  • Gait transition
  • Hybrid walking gait