Intelligent Service Robotics

, Volume 7, Issue 3, pp 175–184 | Cite as

Artificial landmark-based underwater localization for AUVs using weighted template matching

  • Donghoon Kim
  • Donghwa Lee
  • Hyun Myung
  • Hyun-Taek Choi
Original Research Paper

Abstract

This paper deals with vision-based localization techniques in structured underwater environments. For underwater robots, accurate localization is necessary to perform complex missions successfully, but few sensors are available for accurate localization in the underwater environment. Among the available sensors, cameras are very useful for performing short-range tasks despite harsh underwater conditions including low visibility, noise, and large areas of featureless scene. To mitigate these problems, we design artificial landmarks to be utilized with a camera for localization, and propose a novel vision-based object detection technique and apply it to the Monte Carlo localization (MCL) algorithm, a map-based localization technique. In the image processing step, a novel correlation coefficient using a weighted sum, multiple-template-based object selection, and color-based image segmentation methods are proposed to improve the conventional approach. In the localization step, to apply the landmark detection results to MCL, dead-reckoning information and landmark detection results are used for prediction and update phases, respectively. The performance of the proposed technique is evaluated by experiments with an underwater robot platform and the results are discussed.

Keywords

Vision processing Object detection Segmentation  Localization Autonomous underwater vehicle 

References

  1. 1.
    Caccia M (2006) Laser-triangulation optical-correlation sensor for ROV slow motion estimation. IEEE J Ocean Eng 31(3):711–727CrossRefGoogle Scholar
  2. 2.
    Caccia M (2007) Vision-based ROV horizontal motion control: near-seafloor experimental results. Control Eng Pract 15(6):703–714CrossRefGoogle Scholar
  3. 3.
    Ferreira F, Veruggio G, Caccia M, Bruzzone G (2012) Real-time optical SLAM-based mosaicking for unmanned underwater vehicles. Intell Serv Robot 5(1):55–71CrossRefGoogle Scholar
  4. 4.
    Leabourne KN, Rock SM, Fleischer SD, Burton R (1997) Station keeping of an ROV using vision technology. In: Proceedings on MTS/IEEE OCEANS’97, vol 1, pp 634–640Google Scholar
  5. 5.
    Negahdaripour S, Firoozfam P (2006) An ROV stereovision system for ship-hull inspection. IEEE J Ocean Eng 31(3):551–564CrossRefGoogle Scholar
  6. 6.
    Nomoto M, Hattori M (1986) A deep ROV “DOLPHIN 3K”: design and performance analysis. IEEE J Ocean Eng 11(3):373–391CrossRefGoogle Scholar
  7. 7.
    Whitcomb L, Yoerger D, Singh H, Howland J (1999) Advances in underwater robot vehicles for deep ocean exploration: navigation, control, and survey operations. Navigation, control and survery operations. In: 9th International symposium on robotics research, pp 346–353Google Scholar
  8. 8.
    Yoerger D, Newman J, Slotine JJ (1986) Supervisory control system for the Jason ROV. IEEE J Ocean Eng 11(3):392–400CrossRefGoogle Scholar
  9. 9.
    Hollinger GA, Englot B, Hover FS, Mitra U, Sukhatme GS (2013) Active planning for underwater inspection and the benefit of adaptivity. Int J Robot Res 32(1):3–18CrossRefGoogle Scholar
  10. 10.
    Jun BH, Park JY, Lee FY, Lee PM, Lee CM, Kim K, Lim YK, Oh JH (2009) Development of the AUV isimiand a free running test in an ocean engineering basin. Ocean Eng 36(1):2–14CrossRefMATHGoogle Scholar
  11. 11.
    Kim A, Eustice R (2009) Pose-graph visual SLAM with geometric model selection for autonomous underwater ship hull inspection. In: Procedings on IEEE/RSJ international conference on intelligent robotics and systems, pp 1559–1565Google Scholar
  12. 12.
    Marani G, Choi S (2010) Underwater target localization. IEEE Robot Autom Mag 17(1):64–70CrossRefGoogle Scholar
  13. 13.
    Webster SE, Eustice RM, Singh H, Whitcomb LL (2012) Advances in single-beacon one-way-travel-time acoustic navigation for underwater vehicles. Int J Robot Res 31(8):935–950CrossRefGoogle Scholar
  14. 14.
    Yu SC, Ura T, Fujii T, Kondo H (2001) Navigation of autonomous underwater vehicles based on artificial underwater landmarks. In: Procedings on MTS/IEEE OCEANS 2001, pp 409–416Google Scholar
  15. 15.
    Park JY, Jun BH, Lee PM, Oh J (2009) Experiments on vision guided docking of an autonomous underwater vehicle using one camera. Ocean Eng 36(1):48–61CrossRefGoogle Scholar
  16. 16.
    Dudek G, Jenkin M, Prahacs C, Hogue A, Sattar J, Giguere P, German A, Liu H, Saunderson S, Ripsman A et al (2005) A visually guided swimming robot. In: Procedings on IEEE/RSJ international conference on intelligent robotics and systems, pp 3604–3609Google Scholar
  17. 17.
    Sattar J, Dudek G (2009) Robust servo-control for underwater robots using banks of visual filters. In: Procedings on IEEE international conference on robotics and automation, pp 3583–3588Google Scholar
  18. 18.
    Negre A, Pradalier C, Dunbabin M (2008) Robust vision-based underwater homing using self-similar landmarks. J Field Robot 25(6–7):360–377CrossRefGoogle Scholar
  19. 19.
    Maire FD, Prasser D, Dunbabin M, Dawson M (2009) A vision based target detection system for docking of an autonomous underwater vehicle. In: Proceedings of the Australasian conference on robotics and automation. Australian Robotics and Automation Association, SydneyGoogle Scholar
  20. 20.
    Lee D, Kim G, Kim D, Myung H, Choi HT (2012) Vision-based object detection and tracking for autonomous navigation of underwater robots. Ocean Eng 48:59–68CrossRefGoogle Scholar
  21. 21.
    Kim D, Lee D, Myung H, Choi HT (2012) Object detection and tracking for autonomous underwater robots using weighted template matching. In: Procedings on MTS/IEEE OCEANS 2012. IEEE, pp 1–5Google Scholar
  22. 22.
    Balasuriya B, Takai M, Lam W, Ura T, Kuroda Y (1997) Vision based autonomous underwater vehicle navigation: underwater cable tracking. In: Procedings on MTS/IEEE OCEANS’97, vol 2, pp 1418–1424 Google Scholar
  23. 23.
    Hover FS, Eustice RM, Kim A, Englot B, Johannsson H, Kaess M, Leonard JJ (2012) Advanced perception, navigation and planning for autonomous in-water ship hull inspection. Int J Robot Res 31(12):1445–1464CrossRefGoogle Scholar
  24. 24.
    Brunelli R (2009) Template matching techniques in computer vision: theory and practice. Wiley, New YorkCrossRefGoogle Scholar
  25. 25.
    Dellaert F, Fox D, Burgard W, Thrun S (1999) Monte Carlo localization for mobile robots. In: Procedings on IEEE international conference on robotics and automation, vol 2, pp 1322–1328Google Scholar
  26. 26.
    Aulinas J, Carreras M, Llado X, Salvi J, Garcia R, Prados R, Petillot YR (2011) Feature extraction for underwater visual SLAM. In: Procedings on MTS/IEEE OCEANS 2011, pp 1–7Google Scholar
  27. 27.
    Salvi J, Petillot Y, Thomas S, Aulinas J (2008) Visual slam for underwater vehicles using video velocity log and natural landmarks. In: Procedings on MTS/IEEE OCEANS 2008, pp 1–6Google Scholar
  28. 28.
    Singh H, Can A, Eustice R, Lerner S, McPhee N, Pizarro O, Roman C (2004) Seabed AUV offers new platform for high-resolution imaging. Eos Trans Am Geophys Union 85(31):289–296CrossRefGoogle Scholar
  29. 29.
    Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal 22(11):1330–1334CrossRefGoogle Scholar
  30. 30.
    Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal 24(5):603–619CrossRefGoogle Scholar
  31. 31.
    Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Procedings on 6th international conference on computer vision, pp 839–846Google Scholar
  32. 32.
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRefGoogle Scholar
  33. 33.
    Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: Proceedings on European conference on computer vision, pp 404–417Google Scholar
  34. 34.
    Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal 27(10):1615–1630CrossRefGoogle Scholar
  35. 35.
    Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE computer society conference on computer vision and pattern recognition, vol 1, pp 886–893Google Scholar
  36. 36.
    KoreaLPS. http://korealps.co.kr. Accessed 12 Apr 2014
  37. 37.
    Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Donghoon Kim
    • 1
  • Donghwa Lee
    • 1
  • Hyun Myung
    • 1
  • Hyun-Taek Choi
    • 2
  1. 1.Urban Robotics Lab.Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  2. 2.Ocean System Engineering Research DivisionKorea Research Institute of Ships and Ocean Engineering (KRISO)DaejeonRepublic of Korea

Personalised recommendations