Intelligent Service Robotics

, Volume 5, Issue 1, pp 73–87 | Cite as

Cooperative caging and transport using autonomous aquatic surface vehicles

  • Filippo Arrichiello
  • Hordur K. Heidarsson
  • Stefano Chiaverini
  • Gaurav S. Sukhatme
Special Issue


We present a study on the cooperative control of two autonomous surface vehicles performing a caging and transport mission on the water surface. The two vehicles, connected to each other by means of a floating flexible rope, are required to capture a floating target from a given location, and transport it to a designated position. We focus on the coordination and control strategy to meet these requirements, and on its implementation on two under-actuated vehicles. We describe a multi-layered control architecture which achieves the goal, followed by simulation studies and field experiments with the two vehicles caging and transporting a floating target on the surface of a lake.


Marine robotics Cooperative control Cooperative caging Field robotics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

ESM 1 (MP4 15,746 kb)


  1. 1.
    Aguiar A, Almeida J, Bayat M, Cardeira B, Cunha R, Hausler A, Maurya P, Oliveira A, Pascoal A, Pereira A, Rufino M, Sebastiao L, Silvestre C, Vanni F (2009) Cooperative autonomous marine vehicle motion control in the scope of the EU GREX project: theory and practice. In: Proceedings IEEE Conference Oceans’09, Bremen, DGoogle Scholar
  2. 2.
    Aguiar A, Hespanha JP (2007) Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans Autom Control 52(8): 1362–1379CrossRefMathSciNetGoogle Scholar
  3. 3.
    Aguiar A, Pascoal AM (2007) Dynamic positioning and way-point tracking of underactuated AUVs in the presence of ocean currents. Int J Control 80(7): 1092–1108CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Antonelli G (2009) Stability analysis for prioritized closed-loop inverse kinematic algorithms for redundant robotic systems. IEEE Trans Robotics 25(5): 985–994CrossRefGoogle Scholar
  5. 5.
    Antonelli G, Arrichiello F, Chiaverini S (2008) The entrapment/escorting mission: an experimental study using a multirobot system. Special Issues on Design, Control, and Applications of Real-World Multi-Robot Systems. IEEE Robotics Autom Mag (RAM) 15(1): 22–29CrossRefGoogle Scholar
  6. 6.
    Antonelli G, Arrichiello F, Chiaverini S (2008) The Null-Space-based Behavioral control for autonomous robotic systems. J Intell Service Robotics 1(1): 27–39CrossRefGoogle Scholar
  7. 7.
    Antonelli G, Arrichiello F, Chiaverini S (2008) Stability analysis for the Null-Space-based Behavioral control for multi-robot systems. In: 47th IEEE Conference on Decision and Control and 8th European Control Conference, Cancun, MEXGoogle Scholar
  8. 8.
    Antonelli G, Arrichiello F, Chiaverini S (2009) Experiments of formation control with multirobot systems using the Null-Space-based Behavioral control. IEEE Trans Control Syst Technol 17(5): 1173–1182CrossRefGoogle Scholar
  9. 9.
    Arkin RC (1989) Motor schema based mobile robot navigation. Int J Robotics Res 8(4): 92–112CrossRefGoogle Scholar
  10. 10.
    Arkin RC (1998) Behavior-based robotics. The MIT Press, CambridgeGoogle Scholar
  11. 11.
    Arrichiello F, Chiaverini S, Indiveri G, Pedone P (2010) The null-space based behavioral control for mobile robots with velocity actuator saturations. Int J Robotics Res 29(10): 1317–1337CrossRefGoogle Scholar
  12. 12.
    Arrichiello F, Das J, Heidarsson H, Pereira A, Chiaverini S, Sukhatme GS (2009) Multi-robot collaboration with range-limited communication: experiments with two underactuated ASVs. In: Proceedings 2009 international conference on field and service robots, Cambridge, JulyGoogle Scholar
  13. 13.
    Arrichiello F, Heidarsson H, Chiaverini S, Sukhatme GS (2010) Cooperative caging using autonomous aquatic surface vehicles. In: Proceedings 2010 IEEE International Conference on Robotics and Automation, pp 4763–4769, Anchorage, MayGoogle Scholar
  14. 14.
    Ashrafiuon H, Muske KR, McNinch LC, Soltan RA (2008) Sliding-mode tracking control of surface vessels. IEEE Trans Ind Electron 55(11): 4004–4012CrossRefGoogle Scholar
  15. 15.
    Bandyopadhyayand T, Sarcione L, Hover F (2009) A simple reactive obstacle avoidance algorithm and its application in Singapore harbour. In: Proceedings 2009 International Conference on Field and Service Robots, Cambridge, JulyGoogle Scholar
  16. 16.
    Borhaug E, Pavlov A, Ghabcheloo R, Pettersen K, Pascoal A, Silvestre C (2006) Formation control of underactuated marine vehicles with communication constraints. In: Proceedings 7th IFAC Conference on Manoeuvring and Control of Marine Craft, LisbonGoogle Scholar
  17. 17.
    Brooks RA (1986) A robust layered control system for a mobile robot. IEEE J Robotics Autom 2(1): 14–23CrossRefGoogle Scholar
  18. 18.
    Cheng P, Fink J, Kim S, Kumar V (2009) Cooperative towing with multiple robots. Algorithmic Foundation of Robotics VIII, pp 101–116Google Scholar
  19. 19.
    Curcio J, Leonard J, Patrikalakis A (2005) SCOUT-a low cost autonomous surface platform for research in cooperative autonomy. In: Proceedings of MTS/IEEE, OCEANS, 2005, pp 725–729, WashingtonGoogle Scholar
  20. 20.
    Dong W, Farrell JA (2008) Formation control of multiple underactuated surface vessels. Control Theory Appl IET 2(12): 1077–1085CrossRefMathSciNetGoogle Scholar
  21. 21.
    Esposito J, Feemster M, Smith E (2008) Cooperative manipulation on the water using a swarm of autonomous tugboats. In Proceedings 2008 IEEE International Conference on Robotics and Automation, pp 1501–1506. IEEEGoogle Scholar
  22. 22.
    Esposito JM (2010) Decentralized cooperative manipulation with a swarm of mobile robots: the approach problem. In: American Control Conference (ACC), 2010, pp 4762–4767Google Scholar
  23. 23.
    Fahimi F (2007) Sliding-mode formation control for underactuated surface vessels. IEEE Trans Robotics 23(3): 617–622CrossRefGoogle Scholar
  24. 24.
    Fink J, Hsieh MA, Kumar V (2008) Multi-robot manipulation via caging in environments with obstacles. In: Proceedings IEEE International Conference on Robotics and Automation, pp 1471–1476, PasadenaGoogle Scholar
  25. 25.
    Fossen TI (2002) Marine control systems: guidance, navigation and control of ships, rigs and underwater vehicles. Marine Cybernetics, TrondheimGoogle Scholar
  26. 26.
    Gerkey BP, Matarić MJ (2002) Sold!: Auction methods for multirobot coordination. IEEE Trans Robotics Autom 18(5): 758–768CrossRefGoogle Scholar
  27. 27.
    Ghommam J, Mnif F (2009) Coordinated path following control for a group of underactuated surface vessels. IEEE Trans Ind Electron 56(10): 3951–3963CrossRefGoogle Scholar
  28. 28.
    Ihle IAF, Jouffroy J, Fossen TI (2006) Robust formation control of marine craft using lagrange multipliers. In: Pettersen KY, Gravdahl T, Nijmeijer H (eds) Group coordination and cooperative control. Springer-Verlag’s Lecture Notes in Control and Information Systems series, MayGoogle Scholar
  29. 29.
    Kube CR, Bonabeau E (2000) Cooperative transport by ants and robots. Robotics Auton Syst 30(1–2): 85–101CrossRefGoogle Scholar
  30. 30.
    Lefeber EL, Pettersen KY, Nijmeijer H (2003) Tracking control of an underactuated ship. IEEE Trans Control Syst Technol 11(1): 52–61CrossRefGoogle Scholar
  31. 31.
    Newman JN (1977) Marine hydrodynamics. MIT Press, CambridgeGoogle Scholar
  32. 32.
    Pereira A, Das J, Sukhatme GS (2008) An experimental study of station keeping on an underactuated ASV. In: 2008 IEEE/RSJ International Conference on Intelligent RObots and Systems, Nice, France, SeptemberGoogle Scholar
  33. 33.
    Peters F (2000) Shape and drag of a bulging rope in uniform cross flow. Acta Mechanica 139(1): 161–170CrossRefMATHGoogle Scholar
  34. 34.
    Pettersen KY, Fossen TI (2000) Underactuated dynamic positioning of a ship-experimental results. IEEE Trans Control Syst Technol 8(5): 856–863CrossRefGoogle Scholar
  35. 35.
    Pettersen KY, Mazencs F, Nijmeijer H (2004) Global uniform asymptotic stabilization of an underactuated surface vessels: experimental results. IEEE Trans Control Syst Technol 12(6): 891–903CrossRefGoogle Scholar
  36. 36.
    Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, Berger E, Wheeler R, Ros ANg (2009) An open-source robot operating system. In: Open-source software workshop of the 2009 IEEE International Conference on Robotics and Automation, KobeGoogle Scholar
  37. 37.
    Shafer AJ, Benjamin MR, Leonard JJ, Curcio J (2008) Autonomous cooperation of heterogeneous platforms for sea-based search tasks. In: Proceedings MTS/IEEE OCEANS 2008, QuebecGoogle Scholar
  38. 38.
    Wang Z, Nakano E, Takahashi T (2003) Solving function distribution and behavior design problem for cooperative object handling by multiple mobile robots. IEEE Trans Syst Man Cybernet Part A 33(5): 537–549CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Filippo Arrichiello
    • 1
  • Hordur K. Heidarsson
    • 2
  • Stefano Chiaverini
    • 1
  • Gaurav S. Sukhatme
    • 2
  1. 1.Dipartimento di Automazione, Elettromagnetismo, Ingegneria dell’Informazione e Matematica IndustrialeUniversità degli Studi di CassinoCassino (FR)Italy
  2. 2.The Robotic Embedded Systems LaboratoryUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations