Intelligent Service Robotics

, Volume 5, Issue 1, pp 19–31 | Cite as

Reconfigurable AUV for intervention missions: a case study on underwater object recovery

  • Mario Prats
  • David Ribas
  • Narcís Palomeras
  • Juan Carlos García
  • Volker Nannen
  • Stephan Wirth
  • José Javier Fernández
  • Joan P. Beltrán
  • Ricard Campos
  • Pere Ridao
  • Pedro J. Sanz
  • Gabriel Oliver
  • Marc Carreras
  • Nuno Gracias
  • Raúl Marín
  • Alberto Ortiz
Special Issue

Abstract

Starting in January 2009, the RAUVI (Reconfigurable Autonomous Underwater Vehicle for Intervention Missions) project is a 3-year coordinated research action funded by the Spanish Ministry of Research and Innovation. In this paper, the state of progress after 2 years of continuous research is reported. As a first experimental validation of the complete system, a search and recovery problem is addressed, consisting of finding and recovering a flight data recorder placed at an unknown position at the bottom of a water tank. An overview of the techniques used to successfully solve the problem in an autonomous way is provided. The obtained results are very promising and are the first step toward the final test in shallow water at the end of 2011.

Keywords

Underwater robotics Intervention AUV Autonomous underwater manipulation Underwater computer vision Graphical user interfaces 

References

  1. 1.
    Marani G, Choi SK (2010) Underwater target localization. IEEE Robot Autom Mag 17(1): 18CrossRefGoogle Scholar
  2. 2.
    Evans J, Redmond P, Plakas C, Hamilton K, Lane D (2003) Autonomous docking for intervention-auvs using sonar and video-based real-time 3d pose estimation. In: OCEANS 2003, vol 4. San Diego, pp 2201–2210Google Scholar
  3. 3.
    Sanz PJ, Prats M, Ridao P, Ribas D, Oliver G, Orti A (2010) Recent progress in the RAUVI project. A reconfigurable autonomous underwater vehicle for intervention. In: 52-th international symposium ELMAR-2010, Zadar, pp 471–474Google Scholar
  4. 4.
    Weiss P, Mascarell J, Badica M, Labbe D, Brignone L, Lapierre L (2003) Freesub: modular control system for intervention auvs (iauvs). In: 13th international symposium on unmanned untethered submersible technology (UUST03), DurhamGoogle Scholar
  5. 5.
    Denavit J, Hartenberg RS (1955) A kinematic notation for lower-pair mechanisms based on matrices. Trans ASME J Appl Mech 23: 215–221MathSciNetGoogle Scholar
  6. 6.
    Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, Berger E, Wheeler R, Ng A (2009) ROS: an open-source robot operating system. In: ICRA workshop on open source softwareGoogle Scholar
  7. 7.
    Cousins S (2010) Welcome to ROS topics. IEEE Robot Autom Mag 17(1): 13–14CrossRefGoogle Scholar
  8. 8.
    Palomeras N, García JC, Prats M, Fernández JJ, Sanz PJ, Ridao P (2010) A distributed architecture for enabling autonomous underwater intervention missions. In: Systems conference, 2010 4th annual IEEE, pp 159–164Google Scholar
  9. 9.
    Ridao P, Ribas D, Hernàndez E, Rusu A (2011) USBL/DVL navigation through delayed position fixes. In: Proceedings of the IEEE international conference on robotics and automation, Shanghai, pp 2344–2349Google Scholar
  10. 10.
    Maybeck P (1982) Stochastic models, estimation and control, vol 1. Academic Press, DublinGoogle Scholar
  11. 11.
    Healey AJ (2006) Guidance laws, obstacle avoidance and artificial potential functions. In: Advances in unmanned marine vehicles, vol 3. The Istitution of Electrical Engineers, pp 43–66Google Scholar
  12. 12.
    Prats M, García JC, Fernández JJ, Marín R, Sanz PJ (2011) Towards specification, planning and sensor-based control of autonomous underwater intervention. In IFAC 2011, Milano (to be published)Google Scholar
  13. 13.
    Nicosevici T, Gracias N, Negahdaripour S, Garcia R (2009) Efficient three-dimensional scene modeling and mosaicing. J Field Robot 26: 759–788CrossRefGoogle Scholar
  14. 14.
    Mobley CD (1994) Light and water, radiative transfer in natural waters. Academic Press, DublinGoogle Scholar
  15. 15.
    Bonin F, Burguera A, Oliver G (2011) Imaging systems for advanced underwater vehicles. J Maritime Res (to be published)Google Scholar
  16. 16.
    Ferrer J, Elibol A, Delaunoy O, Gracias N, García R (2007) Large-area photo-mosaics using global alignment and navigation data. In: Oceans MTS/IEEE, Vancouver, pp 1–9Google Scholar
  17. 17.
    Lirman D, Gracias N, Gintert B, Gleason A, Reid RP, Negahdaripour S, Kramer P (2007) Development and application of a video-mosaic survey technology to document the status of coral reef communities. Environ Monit Assess 1–3(125): 59–73CrossRefGoogle Scholar
  18. 18.
    Gracias N, Gleason A, Negahdaripour S, Mahoor M (2009) Fast image blending using watersheds and graph cuts. Image Vis Comput 27(5): 597–607CrossRefGoogle Scholar
  19. 19.
    Prados R, Neumann L, Cufi X, Garcia R (2007) Visually pleasant blending techniques in underwater mosaicing. Instrum Viewpoint 6Google Scholar
  20. 20.
    Kosecka J., Li F., Yang X (2005) Global localization and relative positioning based on scale-invariant keypoints. Robot Autonom Syst 52(1): 27–38 (advances in robot vision)CrossRefGoogle Scholar
  21. 21.
    Kosecka J, Li F (May 2004) Vision based topological Markov localization. In: Robotics and automation, 2004. Proceedings of 2004 IEEE International Conference on ICRA ’04, vol 2, pp 1481–1486Google Scholar
  22. 22.
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60: 91–110CrossRefGoogle Scholar
  23. 23.
    Bay H, Tuytelaars T, van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110: 346–359CrossRefGoogle Scholar
  24. 24.
    Evans C (2009) Notes on the OpenSURF library. Technical report CSTR-09-001. University of BristolGoogle Scholar
  25. 25.
    Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24: 381–395CrossRefMathSciNetGoogle Scholar
  26. 26.
    Ribas D, Ridao P, Neira J (August 2010) Underwater SLAM for structured environments using an imaging Sonar. In: Springer tracts in advanced robotics, vol 65. Springer, HeidelbergGoogle Scholar
  27. 27.
    Gracias N, Zwaan S, Bernardino A, Santos-Victor J (2003) Mosaic based navigation for autonomous underwater vehicles. J Ocean Eng 28(4)Google Scholar
  28. 28.
    Whitney DE (1969) Resolved motion rate control of manipulators and human prostheses. IEEE Trans Man Mach Syst 10(2): 47–53CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Mario Prats
    • 1
  • David Ribas
    • 2
  • Narcís Palomeras
    • 2
  • Juan Carlos García
    • 1
  • Volker Nannen
    • 3
  • Stephan Wirth
    • 3
  • José Javier Fernández
    • 1
  • Joan P. Beltrán
    • 3
  • Ricard Campos
    • 2
  • Pere Ridao
    • 2
  • Pedro J. Sanz
    • 1
  • Gabriel Oliver
    • 3
  • Marc Carreras
    • 2
  • Nuno Gracias
    • 2
  • Raúl Marín
    • 1
  • Alberto Ortiz
    • 3
  1. 1.University of Jaume ICastellón de la PlanaSpain
  2. 2.University of GironaGeronaSpain
  3. 3.University of Balearic IslandsPalma de MallorcaSpain

Personalised recommendations