Intelligent Service Robotics

, Volume 3, Issue 4, pp 219–232 | Cite as

Indoor robot gardening: design and implementation

  • Nikolaus Correll
  • Nikos Arechiga
  • Adrienne Bolger
  • Mario Bollini
  • Ben Charrow
  • Adam Clayton
  • Felipe Dominguez
  • Kenneth Donahue
  • Samuel Dyar
  • Luke Johnson
  • Huan Liu
  • Alexander Patrikalakis
  • Timothy Robertson
  • Jeremy Smith
  • Daniel Soltero
  • Melissa Tanner
  • Lauren White
  • Daniela Rus
Special Issue

Abstract

This paper describes the architecture and implementation of a distributed autonomous gardening system with applications in urban/indoor precision agriculture. The garden is a mesh network of robots and plants. The gardening robots are mobile manipulators with an eye-in-hand camera. They are capable of locating plants in the garden, watering them, and locating and grasping fruit. The plants are potted cherry tomatoes enhanced with sensors and computation to monitor their well-being (e.g. soil humidity, state of fruits) and with networking to communicate servicing requests to the robots. By embedding sensing, computation, and communication into the pots, task allocation in the system is de-centrally coordinated, which makes the system scalable and robust against the failure of a centralized agent. We describe the architecture of this system and present experimental results for navigation, object recognition, and manipulation as well as challenges that lie ahead toward autonomous precision agriculture with multi-robot teams.

Keywords

Robotic agriculture Indoor gardening Tomato detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Kufaishi S, Blackmore B, Sourell H (2005) The potential contribution of precision irrigation to water conservation. In: Proceedings of the 5th European conference on precision agriculture, pp 943–950Google Scholar
  2. 2.
    Amstutz P, Correll N, Martinoli A (2009) Distributed boundary coverage with a team of networked miniature robots using a robust market-based algorithm. Ann Math Artif Intell (Special Issue Cover Explor Search) 52(2–4): 307–333MathSciNetGoogle Scholar
  3. 3.
    Åstrand B, Baerveldt AJ (2002) An agricultural mobile robot with vision-based perception for mechanical weed control. Auton Robots 13(1): 21–35MATHCrossRefGoogle Scholar
  4. 4.
    Blackmore B (2007) A systems view of agricultural robots. In: Proceedings of the 6th European conference on precision agriculture, pp 23–31Google Scholar
  5. 5.
    Blackmore B, Fountas S, Gemtos T, Vougioukas S (2006) Ecobots: improved energy utilisation through smaller smarter machines. In: Proceedings of the 3rd IFAC international workshop on bio-roboticsGoogle Scholar
  6. 6.
    Chaumette F, Hutchinson S (2006) Visual servo control part i: basic approaches. Robot Autom Mag 13(4): 82–90CrossRefGoogle Scholar
  7. 7.
    Correll N, Arechiga N, Bolger A, Bollini M, Charrow B, Clayton A, Dominguez F, Donahue K, Dyar S, Johnson L, Liu H, Patrikalakis A, Robertson T, Smith J, Soltero D, Tanner M, White L, Rus D (2009) Building a distributed robot garden. In: IEEE/RSJ International conference on intelligent robots and systems (IROS), St. Louis, MO, pp 1509–1516Google Scholar
  8. 8.
    Edan Y (1995) Design of an autonomous agricultural robot. Appl Intell 5(1): 41–50CrossRefGoogle Scholar
  9. 9.
    van Henten E, Hemming J, van Tuijl B, Kornet J, Meuleman J, Bontsema J, van Os E (2002) An autonomous robot for harvesting cucumbers in greenhouses. Auton Robots 13(3): 241–258MATHCrossRefGoogle Scholar
  10. 10.
    Jagannatha S, Levesque A, Singh Y (2001) Approximation-based control and avoidance of a mobile base with an onboard arm for mars greenhouse operation. In: Proceedings of the 2001 IEEE international symposium on intelligent control, pp 103–108Google Scholar
  11. 11.
    Jimenez A, Ceres R, Pons J (2000) A survey of computer vision methods for locating fruit on trees. Trans ASAE 43(6): 1911–1920Google Scholar
  12. 12.
    Kim Y, Evans R, Iversen W, Pierce F (2006) Instrumentation and control for wireless sensor network for automated irrigation. ASAE Paper No 061105, St Joseph, MichiganGoogle Scholar
  13. 13.
    Kondo N, Nishitsuji Y, Ling P, Ting K (1996) Visual feedback guided robotic cherry tomato harvesting. Trans Am Soc Agric Eng (ASAE) 39(6): 2331–2338Google Scholar
  14. 14.
    Kondo N, Ninomiya K, Hayashi S (2005) A new challenge of robot for harvesting strawberry grown on table top culture. In: Proceedings of ASAE annual international meeting, Tampa, Florida. Paper number: 053138Google Scholar
  15. 15.
    Lee W, Slaughter D, Giles D (1995) Robotic weed control system for tomatoes. Precis Agric 1(1): 95–113CrossRefGoogle Scholar
  16. 16.
    Lochmatter T, Roduit P, Cianci C, Correll N, Jacot J, Martinoli A (2008) Swistrack—a flexible open source tracking software for multi-agent systems. In: IEEE/RSJ International conference on intelligent robots and systems (IROS), Nice, France, pp 4004–4010Google Scholar
  17. 17.
    Otte M, Correll N (2010) The any-com approach to multi-robot coordination. In: IEEE International conference on robotics and automation (ICRA), workshop on network science and systems issues in multi-robot autonomy (NETSS), Anchorage, AK, USAGoogle Scholar
  18. 18.
    Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, Wheeler R, Ng A (2009) Ros: an open-source robot operating system. In: International conference on robotics and automation, workshop on open-source robotics, open-source software workshopGoogle Scholar
  19. 19.
    Reed J, Miles S, Butler J, Baldwin M, Noble R (2001) Automatic mushroom harvester development. J Agric Eng Res 78(1): 15–23CrossRefGoogle Scholar
  20. 20.
    Russell B, Torralba A, Murphy K, Freeman W (2008) Labelme: a database and web-based tool for image annotation. Int J Comput Vis 77(1–3): 157–173CrossRefGoogle Scholar
  21. 21.
    Rusu R, Gerkey B, Beetz M (2008) Robots in the kitchen: exploiting ubiquitous sensing and actuation. Robot Auton Syst (Special Issue Netw Robot Syst) 56: 844–856Google Scholar
  22. 22.
    Saffiotti A, Broxvall M, Gritti M, LeBlanc K, Lundh R, Rashid J, Seo B, Cho Y (2008) The peis-ecology project: vision and results. In: Proceedings of the IEEE/RSJ International conference on intelligent robots and systems (IROS), Nice, France, pp 2329–2335Google Scholar
  23. 23.
    Schwager M, Rus D, Slotine JJ (2009) Decentralized, adaptive coverage control for networked robots. Int J Robot Res 28(3): 357–375CrossRefGoogle Scholar
  24. 24.
    Srinivasan, A (eds) (2006) Handbook of precision agriculture: principles and applications. CRC Press,Google Scholar
  25. 25.
    Stentz A (1995) The focussed D* algorithm for real-time replanning. In: Proceedings of the international joint conference on artificial intelligence, pp 1652–1659Google Scholar
  26. 26.
    Tabb A, Peterson D, Park J (2006) Segmentation of apple fruit from video via background modeling. In: Proceedings of the American Society of Agricultural and Biological Engineers (ASABE) Annual International Meeting, Portland, pp 11Google Scholar
  27. 27.
    Tanigaki K, Fujiura T, Akase A, Imagawa J (2008) Cherry-harvesting robot. Comput Electron Agric 63(1): 65–72. (special issue on bio-robotics)CrossRefGoogle Scholar
  28. 28.
    Torralba A, Murphy K, Freeman W (2004) Sharing features: efficient boosting procedures for multiclass object detection. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 762–769Google Scholar
  29. 29.
    Wang N, Zhang N, Wang M (2006) Wireless sensors in agriculture and food industry—recent development and future perspective. Comput Electron Agric 50(1): 1–14CrossRefGoogle Scholar
  30. 30.
    Zhang W, Kantor G, Singh S (2004) Integrated wireless sensor/actuator networks in agricultural applications. In: Proceedings of ACM SenSys, p 317Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Nikolaus Correll
    • 1
  • Nikos Arechiga
    • 2
  • Adrienne Bolger
    • 2
  • Mario Bollini
    • 2
  • Ben Charrow
    • 2
  • Adam Clayton
    • 2
  • Felipe Dominguez
    • 2
  • Kenneth Donahue
    • 2
  • Samuel Dyar
    • 2
  • Luke Johnson
    • 2
  • Huan Liu
    • 2
  • Alexander Patrikalakis
    • 2
  • Timothy Robertson
    • 2
  • Jeremy Smith
    • 2
  • Daniel Soltero
    • 2
  • Melissa Tanner
    • 2
  • Lauren White
    • 2
  • Daniela Rus
    • 2
  1. 1.Department of Computer ScienceUniversity of Colorado at BoulderBoulderUSA
  2. 2.Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations