Advertisement

Scalable and practical pursuit-evasion with networked robots

  • Marcos A. M. Vieira
  • Ramesh Govindan
  • Gaurav S. Sukhatme
Special Issue

Abstract

In this paper, we consider the design and implementation of practical pursuit-evasion games with networked robots, where a communication network provides sensing-at-a-distance as well as a communication backbone that enables tighter coordination between pursuers. We first develop, using the theory of zero-sum games, an algorithm that computes the minimal completion time strategy for pursuit-evasion when pursuers and evaders have same speed, and when all players make optimal decisions based on complete knowledge. Then, we extend this algorithm to when evader are significantly faster than pursuers. Unfortunately, these algorithms do not scale beyond a small number of robots. To overcome this problem, we design and implement a partition algorithm where pursuers capture evaders by decomposing the game into multiple multi-pursuer single-evader games. We show that the partition algorithm terminates, has bounded capture time, is robust, and is scalable in the number of robots. We then describe the design of a real-world mobile robot-based pursuit evasion game. We validate our algorithms by experiments in a moderate-scale testbed in a challenging office environment. Overall, our work illustrates an innovative interplay between robotics and communication.

Keywords

Networked robots Pursuit-evasion game Wireless sensor network 

Supplementary material

ESM 1 (mpg 17,392 kb)

References

  1. 1.
    Aigner M, Fromme M (1984) A Game of cops and robber. Discrete Appl. Math 8: 1–12zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alankus G, Atay N, Lu C, Bayazit B (2007) Adaptive embedded roadmaps for sensor networks. In: IEEE international conference on robotics and automationGoogle Scholar
  3. 3.
    Alspach B (2004) Searching and sweeping graphs: a brief survey. Le Matematiche (Catania) 59: 5–37zbMATHMathSciNetGoogle Scholar
  4. 4.
    Batalin MA, Sukhatme GS (2003) Coverage, exploration and deployment by a mobile robot and communication network. In: Telecommunication systems journal. Special issue on wireless sensor networks, pp 376–391Google Scholar
  5. 5.
    Berarducci A, Intrigila B (1993) On the cop number of a graph. Adv Appl Math 14(4): 389–403. doi: 10.1006/aama.1993.1019 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bhattacharya S, Candido S, Hutchinson S (2007) Motion strategies for surveillance. In: Robotics: science and systems. http://www.roboticsproceedings.org/rss03/p32.html
  7. 7.
    Burkard RE, Çela E (1999) Linear assignment problems and extensions. handbook of combinatorial optimization, vol. 4, Kluwer Academic Publishers, pp. 75–149Google Scholar
  8. 8.
    Cheung W (2005) Constrained pursuit-evasion problems in the plane. Master Thesis, University of British ColumbiaGoogle Scholar
  9. 9.
    Corke PI, Hrabar SE, Peterson R, Rus D, Saripalli S, Sukhatme GS (2004) Deployment and connectivity repair of a sensor net. In: 9th international symposium on experimental roboticsGoogle Scholar
  10. 10.
    Corker P, Peterson R, Rus D (2005) Localization and navigation assisted by networked cooperating sensors and robots. Int J Robot Res 24(9): 771–786CrossRefGoogle Scholar
  11. 11.
    Gerkey BP, Vaughan RT, Støy K, Howard A, Sukhatme GS, Mataric MJ (2001) Most valuable player: a robot device server for distributed control. Maui, HI, USA, pp 1226–1231Google Scholar
  12. 12.
    Gnawali O, Greenstein B, Jang KY, Joki A, Paek J, Vieira M, Estrin D, Govindan R, Kohler E (2006) The TENET architecture for tiered sensor networks. In: Proceedings of the ACM conference on embedded networked sensor systems. Boulder, ColoradoGoogle Scholar
  13. 13.
    Goldstein AS, Reingold EM (1995) The complexity of pursuit on a graph. Theor Comput Sci 143(1): 93–112. doi: 10.1016/0304-3975(95)80012-3 zbMATHMathSciNetGoogle Scholar
  14. 14.
    Guibas LJ, Latombe JC, LaValle SM, Lin D, Motwani R (1997) Visibility-based pursuit-evasion in a polygonal environment. In: WADS '97: proceedings of the 5th international workshop on algorithms and data structures. Springer-Verlag, London, UK, pp 17–30. ISBN:3-540-63307-3Google Scholar
  15. 15.
    Howard A, Matarić MJ, Sukhatme GS (2002) An incremental self-deployment algorithm for mobile sensor networks. Auton Robots 13(2): 113–126zbMATHCrossRefGoogle Scholar
  16. 16.
    Isler V, Kannan S, Khanna S (2005) Randomized pursuit-evasion in a polygonal environment. IEEE Trans Robot 5(21): 864–875Google Scholar
  17. 17.
    Jonker R, Volgenant A (1987) A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38(4): 325–340. doi: 10.1007/BF02278710 zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kuipers B, Byun YT (1990) A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Tech. Rep. AI90-120Google Scholar
  19. 19.
    Li Q, Rus D (2005) Navigation protocols in sensor networks. ACM Trans Sensor Netw 1(1): 3–35CrossRefGoogle Scholar
  20. 20.
    Matarić MJ (1992) Integration of representation into goal-driven behavior-based robots. IEEE Trans Robot Autom 8(3): 304–312CrossRefGoogle Scholar
  21. 21.
    Matarić MJ (2007) The robotics primer. MIT Press, CambridgeGoogle Scholar
  22. 22.
    Maxim B, Gaurav SS (2007) The design and analysis of an efficient local algorithm for coverage and exploration based on sensor network deployment. IEEE Trans Robot 23(4): 661–675CrossRefGoogle Scholar
  23. 23.
    Murrieta-Cid R, Muppirala T, Sarmiento A, Bhattacharya S, Hutchinson S (2007) Surveillance strategies for a pursuer with finite sensor range. Int J Rob Res 26(3): 233–253. doi: 10.1177/0278364907077083 CrossRefGoogle Scholar
  24. 24.
    Neufeld E, Myrvold W (1997) Practical toroidality testing. In: SODA '97: Proceedings of the eighth annual ACM-SIAM symposium on discrete algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, pp 574–580. ISBN:0-89871-390-0Google Scholar
  25. 25.
    Neufeld S, Nowakowski R (1998) A game of cops and robbers played on products of graphs. Discrete Math 186(1–3): 253–266. doi: 10.1016/S0012-365X(97)00165-9 zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Nowakowski RJ, Winkler P (1983) Vertex-to-vertex pursuit in a graph. Discrete Math 43(2–3): 235–239zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Oh S, Schenato L, Chen P, Sastry S (2007) Tracking and coordination of multiple agents using sensor networks: system design, algorithms and experiments. Proceedings IEEE 95(1):234–254. http://www.truststc.org/pubs/244.html Google Scholar
  28. 28.
    O’Hara KJ, Bigio V, Dodson E, Irani A, Walker D, Balch T (2005) Physical path planning using the gnats. In: IEEE international conference on robotics and automationGoogle Scholar
  29. 29.
    Parsons TD (1978) Pursuit-evasion in a graph. Lect Notes Math 642: 426–441. doi: 10.1007/BFb0070400 CrossRefMathSciNetGoogle Scholar
  30. 30.
    Pferschy U (1997) Solution methods and computational investigations for the linear bottleneck assignment problem. Computing 59(3): 237–258. doi: 10.1007/BF02684443 zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Quilliot A (1985) A short note about pursuit games played on a graph with a given genus. J Comb Theory, Ser B 38(1): 89–92zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Reich J, Misra V, Rubenstein D (2008) Roomba MADNeT: a mobile ad-hoc delay tolerant network testbed. In: MC2R: Mobile Computing and Communications Review. ACM SigmobileGoogle Scholar
  33. 33.
    Russell, Stuart J, Norvig, Peter (2003) Artificial Intelligence: A Modern Approach. http://portal.acm.org/citation.cfm?id=773294
  34. 34.
    Seymour PD, Thomas R (1993) Graph searching and a min–max theorem for tree-width. J Comb Theory Ser B 58(1): 22–33. doi: 10.1006/jctb.1993.1027 zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Sgall J (2001) Solution of David Gale’s lion and man problem. Theor Comput Sci 259(1–2): 663–670zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
  37. 37.
    Tekdas O, Isler V (2008) Robotic routers. In: Proceeding of IEEE international conference on robotics and automation. http://www.cs.rpi.edu/%7Eisler/new/pub/pubs/icra08routers.pdf (to appear)
  38. 38.
    The SmURV Robotics Platform. http://robotics.cs.brown.edu/projects/smurv/
  39. 39.
    Vidal R, Shakernia O, Kim HJ, Shim DH, Sastry S (2002) Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation. IEEE Trans Robot Autom 18(5): 662–669CrossRefGoogle Scholar
  40. 40.
    Wang X, Jose B. Cruz J, Chen G, Pham K, Blasch E (2007) Formation control in multi-player pursuit evasion game with superior evaders, p 657811. SPIE. doi: 10.1117/12.723300. http://link.aip.org/link/?PSI/6578/657811/1
  41. 41.
    Wei M, Chen G, Cruz J, Hayes L, Chang MH (2006) A decentralized approach to pursuer-evader games with multiple superior evaders. Intelligent Transportation Systems Conference. ITSC '06. IEEE pp 1586–1591.doi: 10.1109/ITSC.2006.1707450
  42. 42.
    Weisstein EW. Grid graph. MathWorld—a wolfram web resource. http://mathworld.wolfram.com/GridGraph.html

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Marcos A. M. Vieira
    • 1
  • Ramesh Govindan
    • 2
  • Gaurav S. Sukhatme
    • 3
  1. 1.University of Southern CaliforniaLos AngelesUSA
  2. 2.University of Southern CaliforniaLos AngelesUSA
  3. 3.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations