The UJI librarian robot

  • Mario Prats
  • Ester Martínez
  • Pedro J. Sanz
  • Angel P. del Pobil
Original Research Paper


This paper describes the UJI librarian robot, a mobile manipulator that is able to autonomously locate a book in an ordinary library, and grasp it from a bookshelf, by using eye-in-hand stereo vision and force sensing. The robot is only provided with the book code, a library map and some knowledge about its logical structure and takes advantage of the spatio-temporal constraints and regularities of the environment by applying disparate techniques such as stereo vision, visual tracking, probabilistic matching, motion estimation, multisensor-based grasping, visual servoing and hybrid control, in such a way that it exhibits a robust and dependable performance. The system has been tested, and experimental results show how it is able to robustly locate and grasp a book in a reasonable time without human intervention.


Mobile manipulator Multisensor-based manipulator and grasping Hybrid control 


  1. 1.
    Tomizawa T, Ohya A, Yuta S (2003) Remote book browsing system using a mobile manipulator. In: IEEE international conference on robotics and automation, Taipei, Taiwan, September, pp 256–261Google Scholar
  2. 2.
    Suthakorn J, Lee S, Zhou Y, Choudhury S, Chirikjian GS (2003) An enhanced robotic library system for an off-site shelving facility. In: Proceedings of the 2003 international conference on field and service robotics (FSR), Mt. Fuji-Lake Yamanaka, JapanGoogle Scholar
  3. 3.
    Prats M, Sanz PJ, del Pobil AP, Martínez E, Marín R (2007) Towards multipurpose autonomous manipulation with the UJI service robot. Robotica J 25(2): 245–256Google Scholar
  4. 4.
    del Pobil AP, Serna MA (1995) Spatial representation and motion planning. Springer, BerlinGoogle Scholar
  5. 5.
    Gupta K, del Pobil AP (eds) (1998) Practical motion planning in robotics. Wiley, New YorkzbMATHGoogle Scholar
  6. 6.
    Bort L, del Pobil AP (2000) Using speech to guide a mobile robot manipulator. In: Proceedings of IEEE international conference on systems, man and cybernetics. Nashville, Tennessee, USA, pp 2356–2361Google Scholar
  7. 7.
    Gupta K, del Pobil AP, Choset H (eds) (2000) Lecture notes of the workshop on integrating sensors with mobility and manipulation. In: IEEE International Conferences on Robotics and AutomationGoogle Scholar
  8. 8.
    Choset H, Lynch KM, Hutchinson S, Kantor GA, Burgard W, Kavraki LE et al (2005) Principles of robot motion: theory, algorithms, and implementations. MIT Press, CambridgezbMATHGoogle Scholar
  9. 9.
    Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, CambridgezbMATHGoogle Scholar
  10. 10.
    Faugeras O, Luong QT, Papadopoulo T (2001) The geometry of multiple images. MIT Press, Cambridge. ISBN: 0-262-06220-8zbMATHGoogle Scholar
  11. 11.
    Elgammal A, Duraiswami R, Davis L (2003) Probabilistic tracking in joint feature-spatial spaces. In: IEEE conference on computer vision and pattern recognitionGoogle Scholar
  12. 12.
    Lowe D (1992) Robust model-based motion tracking through the integration of search and estimation. Int J Comput Vis 113–122Google Scholar
  13. 13.
    Schulenburg J Gocr. Available on:
  14. 14.
    Mason M (1981) Compliance and force control for computer-controlled manipulators. IEEE Trans Syst Man Cybern 11(6): 418–432CrossRefGoogle Scholar
  15. 15.
    Schutter JD, Brussels HV (1988) Compliant robot motion I. A formalism for specifying compliant motion tasks. Int J Robot Res 7(4): 3–17 doi: 10.1177/027836498800700401 Google Scholar
  16. 16.
    Kröger T, Finkemeyer B, Thomas U, Wahl F (2004) Compliant motion programming: the task frame formalism revisited. In: Mechatronics & Robotics, Aachen, GermanyGoogle Scholar
  17. 17.
    Baeten J, Bruyninckx H, Schutter JD (2003) Integrated vision/force robotic servoing in the task frame formalism. Int J Robot Res 22(10–11): 941–954 doi: 10.1177/027836490302210010 CrossRefGoogle Scholar
  18. 18.
    Marrone F, Raimondi F, Strobel M (2002) Compliant interaction of a domestic service robot with a human and the environment. In: Proceedings of 33rd international symposium on robotics, StockholmGoogle Scholar
  19. 19.
    Mezouar Y, Prats M, Martinet P (2007) External hybrid vision/ force control. In: International conference on advanced robotics (ICAR’07), Jeju, KoreaGoogle Scholar
  20. 20.
    Hosoda K, Igarashi K, Asada M (1996) Hybrid visual servoing/ force control in unknown environment. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Osaka, Japan, pp 097–1103Google Scholar
  21. 21.
    Morel G, Malis E, Boudet S (1998) Impedance based combination of visual and force control. In: IEEE international conference on robotics and automation, ICRA’98, vol 2. Leuven, Belgique, pp 1743–1748Google Scholar
  22. 22.
    Espiau B, Chaumette F, Rives P (1992) A new approach to visual servoing in Robotics. IEEE Trans Robotics Auto 8(3): 313–326 ISSN: 1042–296XCrossRefGoogle Scholar
  23. 23.
    Hutchinson S, Hager GD, Corke PI (1996) A tutorial on visual servo control. IEEE Trans Robotics Auto 12(5): 651–670 ISSN: 1042–296XCrossRefGoogle Scholar
  24. 24.
    Prats M, Ramos-Garijo R, Sanz P, del Pobil A (2004) Autonomous localization and extraction of books in a library. In: Groen F, et al., Intelligent autonomous systems, vol 8. IOS Press, Amsterdam, pp 1138–1145Google Scholar
  25. 25.
    Horaud RP, Dornaika F, Espiau B (1998) Visually guided object grasping. IEEE Trans Robotics Auto 14(4): 525–532 ISSN: 1042–296XCrossRefGoogle Scholar
  26. 26.
    del Pobil AP, Prats M, Ramos R, Sanz P, Cervera E (2005) The UJI librarian robot. In: Video Proceedings of international conference on robotics and automation (ICRA’05), Barcelona, Spain. Available on the web:

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Mario Prats
    • 1
  • Ester Martínez
    • 1
  • Pedro J. Sanz
    • 1
  • Angel P. del Pobil
    • 1
  1. 1.CastellónSpain

Personalised recommendations