Advertisement

Selenium enhances Conyza canadensis phytoremediation of polycyclic aromatic hydrocarbons in soil

  • Ying Xi
  • Huigang Liu
  • David Johnson
  • Can Zhu
  • Jiangtao Xiang
  • Yingping HuangEmail author
Soils, Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article

Abstract

Purpose

To determine whether supplemental selenium (Se) enhances the tolerance of Conyza canadensis (C. canadensis) to polycyclic aromatic hydrocarbons (PAHs) and thereby accelerates PAH dissipation in soils.

Materials and methods

We examined the dissipation of different concentrations of two PAHs, phenanthrene (PHE) and pyrene (PYR), from contaminated soils after 60 days of growth of C. canadensis supplemented with or without a low level of Se (0.5 mg kg−1) in a pot culture experiment. PAH concentrations were 0, 50, 200, and 800 mg kg−1. Response variables included plant biomass, PAH accumulation in plants, soil microbial biomass carbon (MBC), root morphogenesis, antioxidant enzyme activity, and PHE/PYR dissipation.

Results and discussion

Plant biomass and root morphogenesis decreased with increasing PAH concentration, whereas malondialdehyde concentration, an indicator of oxidative stress, increased. Catalase activity, total superoxide dismutase activity, MBC, and the PAH dissipation ratio all increased with increasing PAH concentration until 800 mg kg−1. Se supplementation of soil increased the tolerance of C. canadensis to PAHs and significantly increased PAH phytoremediation after 60 days of plant growth. The PHE dissipation ratios with and without Se supplementation were 57 ± 3% and 28 ± 8%, respectively, and PYR dissipation ratios were 30 ± 7% and 24 ± 8%. The increase in the PAH dissipation ratio with Se supplementation was largest in PHE-contaminated soils at 800 mg kg−1.

Conclusions

A low concentration of supplemental Se in soil enhances the dissipation of PHE and PYR by C. canadensis. This enhancement is due to an increased plant tolerance toward PAHs, which results in increased C. canadensis biomass, soil MBC, and decreased plant uptake of PAHs. This study suggests that Se supplementation can contribute to ongoing efforts to develop effective phytoremediation systems for soils contaminated with PAHs.

Keywords

Antioxidant enzymes Microbial biomass carbon Polycyclic aromatic hydrocarbons Phytoremediation Selenium 

Abbreviations

AR

Analytically pure

C. Canadensis

Conyza canadensis

CAT

Catalase

dw

Dry weight

fw

Fresh weight

HPLC

High-performance liquid chromatograph

ICP-MS

Inductively coupled plasma-mass spectrometer

MBC

Microbial biomass carbon

MDA

Malondialdehyde

PAHs

Polycyclic aromatic hydrocarbons

PHE

Phenanthrene

Prot

Protein

PYR

Pyrene

ROS

Reactive oxygen species

SD

Standard deviation

Se

Selenium

TSOD

Total superoxide dismutase

Notes

Funding information

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFD0800904), the National Major Science and Technology Program for Water Pollution Control and Management (No. 2012ZX07104-003-04), the Innovation Group Project of Hubei province (No. 2015CFA021), the Doctor Education Fund of Three Gorges University (No. 2018BSPY001), and the Open Fund of the Hubei Engineering Technology Research Center for Farmland Environmental Monitoring (No. 201605).

References

  1. Ahmad P, Allah EFA, Hashem A, Sarwat M, Gucel S (2016) Exogenous application of selenium mitigates cadmium toxicity in Brassica juncea L. (Czern Cross) by up-regulating antioxidative system and secondary metabolites. J Plant Growth Regul 35:936–950CrossRefGoogle Scholar
  2. Alves WS, Manoel EA, Santos NS, Nunes RO, Domiciano GC, Soares MR (2018) Phytoremediation of polycyclic aromatic hydrocarbons (PAHs) by cv. Crioula: a brazilian alfalfa cultivar. Int J Phytoremediat 20:747–755CrossRefGoogle Scholar
  3. And HY, Crowley DE (2007) Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid. Environ Sci Technol 41:4382CrossRefGoogle Scholar
  4. Anderson TH, Domsch KH (1989) Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol Biochem 21:471–479CrossRefGoogle Scholar
  5. Bakker MI, Casado B, Koerselman JW, Tolls J, Kollöffel C (2000) Polycyclic aromatic hydrocarbons in soil and plant samples from the vicinity of an oil refinery. Sci Total Environ 263:91–100CrossRefGoogle Scholar
  6. Binet P, Portal J, Leyval C (2000) Dissipation of 3-6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Soil Biol Biochem 32:2011–2017CrossRefGoogle Scholar
  7. Bingham IJ, Bengough AG (2003) Morphological plasticity of wheat and barley roots in response to spatial variation in soil strength. Plant Soil 250:273–282CrossRefGoogle Scholar
  8. Bor M, özdemir F, Türkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci 164:77–84CrossRefGoogle Scholar
  9. Brinch UC, Ekelund F, Jacobsen CS (2002) Method for spiking soil samples with organic compounds. Appl Environ Microbiol 68:1808–1816CrossRefGoogle Scholar
  10. Cambardella CA, Elliott ET (1992) Particulate soil organic matter change across a grassland cultivation sequence. Soil Sci Soc Am J 56.  https://doi.org/10.2136/sssaj1992.03615995005600030017x
  11. Cheema SA, Imran KM, Shen C, Tang X, Farooq M, Chen L, Zhang C, Chen Y (2010) Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. J Hazard Mater 177:384–389CrossRefGoogle Scholar
  12. Chen T, Wong TK, Yang F, Zheng J (2010) Selenium-induced changes in activities of antioxidant enzymes and content of photosynthetic pigments in spirulina platensis. J Integr Plant Biol 50:40–48CrossRefGoogle Scholar
  13. Clarkson DT, Sanderson J, Scattergood CB (1978) Influence of phosphate-stress on phosphate absorption and translocation by various parts of the root system of Hordeum vulgare L. (barley). Planta 139:47–53CrossRefGoogle Scholar
  14. Diao M, Ma L, Wang J, Cui J, Fu A, Liu HY (2014) Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. J Plant Growth Regul 33:671–682CrossRefGoogle Scholar
  15. Djanaguiraman M, Prasad PV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem 48:999–1007CrossRefGoogle Scholar
  16. Dobriyal P, Qureshi A, Badola R, Hussain SA (2012) A review of the methods available for estimating soil moisture and its implications for water resource management. J Hydrol 458-459:110–117CrossRefGoogle Scholar
  17. Feng RW, Wei CY (2012) Antioxidative mechanisms on selenium accumulation in Pteris vittata L., a potential selenium phytoremediation plant. Plant Soil Environ 58:105–110CrossRefGoogle Scholar
  18. Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68CrossRefGoogle Scholar
  19. Filek M, Keskinen R, Hartikainen H, Szarejko I, Janiak A, Miszalski Z, Golda A (2008) The protective role of selenium in rape seedlings subjected to cadmium stress. J Plant Physiol 165:833–844CrossRefGoogle Scholar
  20. Flores-Molina MR, Thomas D, Lovazzano C, Núñez A, Zapata J, Kumar M, Correa JA, Contreras-Porcia L (2014) Desiccation stress in intertidal seaweeds: effects on morphology, antioxidant responses and photosynthetic performance. Aquat Bot 113:90–99CrossRefGoogle Scholar
  21. Gao Y, Yu XZ, Wu SC, Cheung KC, Tam NFY, Qian PY, Wong MH (2006) Interactions of rice (Oryza sativa L.) and PAH-degrading bacteria (Acinetobacter sp.) on enhanced dissipation of spiked phenanthrene and pyrene in waterlogged soil. Sci Total Environ 372:1–11CrossRefGoogle Scholar
  22. Gao Y, Wang Y, Zeng Y, Zhu X (2013) Phytoavailability and rhizospheric gradient distribution of bound-polycyclic aromatic hydrocarbon residues in soils. Soil Sci Soc Am J 77:1572CrossRefGoogle Scholar
  23. Garg N, Manchanda G (2009) Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) Millsp. (pigeonpea). J Agron Crop Sci 195:110–123CrossRefGoogle Scholar
  24. Guajardo E, Correa JA, Contreras-Porcia L (2015) Role of abscisic acid (ABA) in activating antioxidant tolerance responses to desiccation stress in intertidal seaweed species. Planta 243:767–781CrossRefGoogle Scholar
  25. Guo M, Gong Z, Miao R, Rookes J, Cahill D, Zhuang J (2017) Microbial mechanisms controlling the rhizosphere effect of ryegrass on degradation of polycyclic aromatic hydrocarbons in an aged-contaminated agricultural soil. Soil Biol Biochem 113:130–142CrossRefGoogle Scholar
  26. Habibi G (2017) Selenium ameliorates salinity stress in Petroselinum crispum by modulation of photosynthesis and by reducing shoot Na accumulation. Russ J Plant Physiol 64:368–374CrossRefGoogle Scholar
  27. Hamdi H, Benzarti S, Aoyama I, Jedidi N (2012) Rehabilitation of degraded soils containing aged PAHs based on phytoremediation with alfalfa (Medicago sativa L.). Int Biodeter Biodegr 67:40–47CrossRefGoogle Scholar
  28. Hammer D, Keller C (2002) Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. J Environ Qual 31:1561CrossRefGoogle Scholar
  29. Hartikainen H, Xue T, Piironen V (2000) Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 225:193–200CrossRefGoogle Scholar
  30. Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143:1758–1776CrossRefGoogle Scholar
  31. Hasanuzzaman M, Hossain MA, Fujita M (2010) Selenium in higher plants: physiological role, antioxidant metabolism and abiotic stress tolerance. J Plant Sci 5:354–375CrossRefGoogle Scholar
  32. Hong L, Weisman D, Ye YB, Bo C, Huang YH, Colóncarmona A, Wang ZH (2009) An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Sci 176:375–382CrossRefGoogle Scholar
  33. Huang Y, Huang J, Song Y, Liu H (2017) Use of selenium to alleviate naphthalene induced oxidative stress in Trifolium repens L. Ecotoxicol Environ Safe 143:1–5CrossRefGoogle Scholar
  34. Huesemann MH, Hausmann TS, Fortman TJ, Thom RM, Cullinan V (2009) In situ phytoremediation of PAH- and PCB-contaminated marine sediments with eelgrass (Zostera marina L.). Ecol Eng 35:1395–1404CrossRefGoogle Scholar
  35. Hymer CB, Caruso JA (2006) Selenium speciation analysis using inductively coupled plasma-mass spectrometry. J Chromatogr A 1114:1–20CrossRefGoogle Scholar
  36. Iqbal M, Hussain I, Liaqat H, Ashraf MA, Rasheed R, Rehman AU (2015) Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant Physiol Biochem 94:95–103CrossRefGoogle Scholar
  37. Jia H, Wang H, Lu H, Jiang S, Dai M, Liu J, Yan C (2016) Rhizodegradation potential and tolerance of Avicennia marina (Forsk .L) Vierh in phenanthrene and pyrene contaminated sediments. Mar Pollut Bull 110:112–118CrossRefGoogle Scholar
  38. Jiang C, Zu C, Lu D, Zheng Q, Shen J, Wang H, Li D (2017) Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci Rep 7:42039CrossRefGoogle Scholar
  39. Kalf DF, Crommentuijn T, Plassche EJ (1997) Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs). Ecotoxicol Environ Safe 36:89–97CrossRefGoogle Scholar
  40. KeLing H, Ling Z, JiTao W, Yang Y (2013) Influence of selenium on growth, lipid peroxidation and antioxidative enzyme activity in melon (Cucumis melo L.) seedlings under salt stress. Acta Soc Bot Pol 82:193–197CrossRefGoogle Scholar
  41. Kovacs H, Szemmelveisz K (2017) Disposal options for polluted plants grown on heavy metal contaminated brownfield lands - a review. Chemosphere 166:18–20CrossRefGoogle Scholar
  42. Kremer R, Means N, Kim S (2005) Glyphosate affects soybean root exudation and rhizosphere micro-organisms. Int J Environ Anal Chem 85:1165–1174CrossRefGoogle Scholar
  43. Kumar M, Bijo AJ, Baghel RS, Reddy C, Jha B (2012) Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiol Biochem 51:129–138CrossRefGoogle Scholar
  44. Li Y (2008) Kinetics of the antioxidant response to salinity in the halophyte Limonium bicolor. Forest Ecol Manag 54:493–497Google Scholar
  45. Li W, Wang D, Hu F, Li H, Ma L, Xu L (2016) Exogenous IAA treatment enhances phytoremediation of soil contaminated with phenanthrene by promoting soil enzyme activity and increasing microbial biomass. Environ Sci Pollut Res 23:10656–10664CrossRefGoogle Scholar
  46. Lin L, Zhou W, Dai H, Cao F, Zhang G, Wu F (2012) Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J Hazard Mater 235-236:343–351CrossRefGoogle Scholar
  47. Ling WT, Ren L, Gao YZ, Zhu XZ, Sun BQ (2009) Impact of low-molecular-weight organic acids on the availability of phenanthrene and pyrene in soil. Soil Biol Biochem 41:2187–2195CrossRefGoogle Scholar
  48. Lise S, Erik HL, And PBL, Bruun P (2002) Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environ Sci Technol 36:3057–3063CrossRefGoogle Scholar
  49. Liu R, Xiao N, Wei S, Zhao L, An J (2014) Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix. Sci Total Environ 473-474:350CrossRefGoogle Scholar
  50. Liu X, Cao L, Wang Q, Zhang X, Hu X (2017) Effect of tea saponin on phytoremediation of cd and pyrene in contaminated soils by Lolium multiflorum. Environ Sci Pollut Res 24:18946–18952CrossRefGoogle Scholar
  51. Macek T, Macková M, Káš J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34CrossRefGoogle Scholar
  52. Malik JA, Goel S, Kaur N, Sharma S, Singh I, Nayyar H (2012) Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ Exp Bot 77:242–248CrossRefGoogle Scholar
  53. Menzie CA, Potocki BB, Santodonato J (1992) Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 26:1278–1284CrossRefGoogle Scholar
  54. Moghaddas EEY, Stephens SL (2007) Thinning, burning, and thin-burn fuel treatment effects on soil properties in a Sierra Nevada mixed-conifer forest. Forest Ecol Manag 250:156–166CrossRefGoogle Scholar
  55. Mósena M, Dillenburg LR (2004) Early growth of Brazilian pine (Araucaria angustifolia [Bertol.] Kuntze) in response to soil compaction and drought. Plant Soil 258:293–306CrossRefGoogle Scholar
  56. Naveed M, Brown LK, Raffan AC, George TS, Bengough AG, Roose T, Sinclaird I, Koebernickc N, CoopercL C, Hackette A, Hallett PD (2017) Plant exudates may stabilize or weaken soil depending on species, origin and time. Eur J Soil Sci 68:806–816CrossRefGoogle Scholar
  57. Ognjanović BI, Marković SD, Pavlović SZ, Zikić RV, Stajn AS, Saicić ZS (2008) Effect of chronic cadmium exposure on antioxidant defense system in some tissues of rats: protective effect of selenium. Physiol Res 57:403–411Google Scholar
  58. Olson PE, Castro A, Joern M, Duteau NM, Pilon-Smits EAH, Reardon KF (2007) Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon–contaminated soil. J Environ Qual 36:1461CrossRefGoogle Scholar
  59. Page AL, Miller RH, Jeeney DR (1992) Methods of soil analysis, Part 1. Physical Properties. SSSA Pub., Madison, p 1750Google Scholar
  60. Parrish ZD, Banks MK, Schwab AP (2004) Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. Int J Phytoremediat 6:119–137CrossRefGoogle Scholar
  61. Pedrero Z, Madrid Y, Hartikainen H, Cámara C (2008) Protective effect of selenium in broccoli (Brassica oleracea) plants subjected to cadmium exposure. J Agric Food Chem 56:266–271CrossRefGoogle Scholar
  62. Petrová Š, Rezek J, Soudek P, Vaněk T (2017) Preliminary study of phytoremediation of brownfield soil contaminated by PAHs. Sci Total Environ 599-600:572–580CrossRefGoogle Scholar
  63. Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274CrossRefGoogle Scholar
  64. Proietti P, Nasini L, Del D, Amato RD, Tedeschini E, Businelli D (2013) Scientia horticulturae selenium protects olive (Olea europaea L.) from drought stress. Sci Hortic 164:165–171CrossRefGoogle Scholar
  65. Real AEPD, García-Gonzalo P, Lobo MC, Pérez-Sanz A (2014) Chromium speciation modifies root exudation in two genotypes of Silene vulgaris. Environ Exp Bot 107:1–6CrossRefGoogle Scholar
  66. Reilley KA, Banks MK, Schwab AP (1996) Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J Environ Qual 25:212–219CrossRefGoogle Scholar
  67. Rostami S, Azhdarpoor A, Rostami M, Samaei MR (2016) The effects of simultaneous application of plant growth regulators and bioaugmentation on improvement of phytoremediation of pyrene contaminated soils. Chemosphere 161:219–223CrossRefGoogle Scholar
  68. Saidi I, Chtourou Y, Djebali W (2014) Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. J Plant Physiol 171:85–91CrossRefGoogle Scholar
  69. Salanitro JP, Dorn PB, Michael HH, Moore KO, Rhodes IA, Jackson LMR, Vipond TE, And MMW, Wisniewski HL (1997) Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environ Sci Technol 31:1769–1776CrossRefGoogle Scholar
  70. Schiavon M, Moro I, Pilon-Smits EH, Matozzo V, Malagoli M, DVecchia F (2012) Accumulation of selenium in Ulva sp. and effects on morphology, ultrastructure and antioxidant enzymes and metabolites. Aquat Toxicol 122-123:222–231CrossRefGoogle Scholar
  71. Schiavon M, Dall’acqua S, Mietto A, Pilon-Smits EH, Sambo P, Masi A, Malagoli M (2013) Selenium fertilization alters the chemical composition and antioxidant constituents of tomato (Solanum lycopersicon L.). J Agric Food Chem 61:10542–10554CrossRefGoogle Scholar
  72. Seppänen M, Turakainen M, Hartikainen H (2003) Selenium effects on oxidative stress in potato. Plant Sci 165:311–319CrossRefGoogle Scholar
  73. Sharma S, Goyal R, Sadana US (2014) Selenium accumulation and antioxidant status of rice plants grown on seleniferous soil from Northwestern India. Rice Sci 21:327–334CrossRefGoogle Scholar
  74. Soil Environmental Quality Standard GB15618 (2008)Google Scholar
  75. Srivastava M, Ma LQ, Rathinasabapathi B, Srivastava P (2009) Effects of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L. Bioresour Technol 100:1115–1121CrossRefGoogle Scholar
  76. Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51:1531–1542CrossRefGoogle Scholar
  77. Sun TR, Cang L, Wang QY, Zhou DM, Cheng JM, Xu H (2010) Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil. J Hazard Mater 176:919–925CrossRefGoogle Scholar
  78. Tao S, Cui Y, Xu F, Li B, Cao J, Liu W, Schmitt G, Wang X, Shen W, Qing B (2004) Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Sci Total Environ 320:11–24CrossRefGoogle Scholar
  79. Teng Y, Shen Y, Luo Y, Sun X, Sun M, Fu D, Li Z, Christie P (2011) Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil. J Hazard Mater 186:1271–1276CrossRefGoogle Scholar
  80. Thavamani P, Malik S, Beer M, Megharaj M, Naidu R (2012) Microbial activity and diversity in long-term mixed contaminated soils with respect to polyromantic hydrocarbons and heavy metals. J Environ Manag 99:10–17CrossRefGoogle Scholar
  81. Tu C, Teng Y, Luo Y, Sun X, Deng S, Li Z, Liu W, Xu Z (2011) PCB removal, soil enzyme activities, and microbial community structures during the phytoremediation by alfalfa in field soils. J Soils Sediments 11:649–656CrossRefGoogle Scholar
  82. Urum K, Grigson S, Pekdemir T, Mcmenamy S (2006) A comparison of the efficiency of different surfactants for removal of crude oil from contaminated soils. Chemosphere 62:1403–1410CrossRefGoogle Scholar
  83. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707CrossRefGoogle Scholar
  84. Wang MJ, Jones KC (1994) Uptake of chlorobenzenes by carrots from spiked and sewage sludge-amended soil. Environ Sci Technol 28:1260–1267CrossRefGoogle Scholar
  85. Wang Y, Zhang X, Huang C (2009) Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China. Geoderma 150:141–149CrossRefGoogle Scholar
  86. Wang MC, Chen YT, Chen SH, Chien SWC, Sunkara SV (2012) Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa. Chemosphere 87:217–225CrossRefGoogle Scholar
  87. Wang J, Liu J, Ling W, Huang Q, Gao Y (2017a) Composite of PAH-degrading endophytic bacteria reduces contamination and health risks caused by PAHs in vegetables. Sci Total Environ 598:471–478CrossRefGoogle Scholar
  88. Wang LL, Yu QL, Han L, Ma XL, Song RD, Zhao SN, Zhang WH (2017b) Study on the effect of reactive oxygen species-mediated oxidative stress on the activation of mitochondrial apoptosis and the tenderness of yak meat. Food Chem 244:394CrossRefGoogle Scholar
  89. Weaver SE (2001) The biology of Canadian weeds. Conyza canadensis. Can J Plant Sci 81:867–875CrossRefGoogle Scholar
  90. Xi Y, Song Y, Liu H, Johnson DM, Huang Y (2018) Selenium enhanced degradation of diesel by Erigeron annuus. J Soils Sediments 18:1906–1914CrossRefGoogle Scholar
  91. Xu SY, Chen YX, Wu WX, Wang KX, Lin Q, Liang XQ (2006) Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Sci Total Environ 363:206–215CrossRefGoogle Scholar
  92. Yao X, Chu J, Ba C (2010) Responses of wheat roots to exogenous selenium supply under enhanced ultraviolet-B. Biol Trace Elem Res 136:244–252CrossRefGoogle Scholar
  93. Yao X, Jianzhou C, Xueli H, Binbin L, Jingmin L, Zhaowei Y (2013) Effects of selenium on agronomical characters of winter wheat exposed to enhanced ultraviolet-B. Ecotoxicol Environ Saf 92:320–326CrossRefGoogle Scholar
  94. Yaws CL (1999) Chemical properties handbook. McGraw-Hill, New York, pp 340–389Google Scholar
  95. Yin Y, Wang X, Sun Y, Guo H, Yin D (2008) Bioaccumulation and oxidative stress in submerged macrophyte Ceratophyllum demersum L. upon exposure to pyrene. Environ Toxicol 23:328–336CrossRefGoogle Scholar
  96. Zhang Z, Rengel Z, Chang H, Meney K, Pantelic L, Tomanovic R (2012) Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs). Geoderma 175-176:1–8CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ying Xi
    • 1
    • 2
  • Huigang Liu
    • 1
    • 2
  • David Johnson
    • 2
  • Can Zhu
    • 1
    • 2
  • Jiangtao Xiang
    • 1
    • 2
  • Yingping Huang
    • 1
    • 2
    • 3
    Email author
  1. 1.College of Hydraulic & Environmental EngineeringChina Three Gorges UniversityYichangPeople’s Republic of China
  2. 2.Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of EducationChina Three Gorges UniversityYichangPeople’s Republic of China
  3. 3.Hubei Engineering Technology Research Center for Farmland Environmental MonitoringChina Three Gorges UniversityYichangPeople’s Republic of China

Personalised recommendations