Advertisement

Sources and distribution of arsenic in agricultural soils of Central Mexico

  • Gabriela A. ZanorEmail author
  • María Gabriela García
  • Luis Eduardo Venegas-Aguilera
  • Adriana Saldaña-Robles
  • Noé Saldaña-Robles
  • Oscar A. Martínez-Jaime
  • José Jesús N. Segoviano-Garfias
  • Luis F. Ramírez-Santoyo
Soils, Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article

Abstract

Purpose

The concentrations and distribution of arsenic (As) in two different soil types (Vertisols and Entisols) of Central Mexico impacted by mine activities and irrigation with As-rich groundwater are analyzed in order to determine their impact on the soil quality, and to contribute reliable data that may help to assess the environmental risk that represents the progressive accumulation of As in the arable soils of Guanajuato.

Materials and methods

Two Entisol and two Vertisol profiles located in the Guanajuato state (Mexico) were described and sampled from ~ 1.20-m-deep pits. Soils are irrigated with As-rich deep and shallow groundwaters that were sampled from irrigation boreholes. Additionally, a Vertisol profile located in a parcel not impacted by irrigation was sampled and used as a control soil. Minerals were identified by X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with dispersive X-ray spectrometry (EDS). Geoaccumulation indexes (Igeo) were calculated to evaluate As enrichment with respect to a control soil and the Upper Continental Crust (UCC). Anions and cations of groundwater were analyzed by high-performance liquid chromatography (HPLC) and by inductively coupled plasma atomic emission spectroscopy (ICP-AES), respectively. As in soils was determined by ICP-AES.

Results and discussion

Near total As concentrations are higher in Entisols (mean As value = 7.20 mg/kg) than in Vertisols (mean As = 1.02 mg/kg). As concentrations in the control soil are lower (0.34 to 0.70 mg/kg). The in-depth distribution of As in Vertisol profiles reveals that the higher As concentrations are found in the uppermost horizons (10 cm) and they tend to decrease with depth. In Entisols, As concentrations do not follow a vertical trend. Igeo values of As indicate moderate to heavy As contamination in Vertisols and moderate contamination in Entisols. SEM-EDS analyses revealed the presence of some potential As-bearing minerals such as magnetite and abundant Fe oxides and Ti-Fe coatings precipitated onto feldspar grains, particularly in Entisols.

Conclusions

Irrigation of Vertisols with As-rich groundwater determines As concentrations in the uppermost horizons that exceed the natural background of the region (0.4 mg/kg). In depth, clay grain-sized particles inhibit the downward migration of As, while Fe oxides and organic matter scavenge As by adsorption. As concentrations in Entisols are higher, and the in-depth distribution of this element is controlled by periodic contributions of As-bearing minerals delivered from mine prospects located at the river’s catchments.

Keywords

As adsorption As-rich irrigation water Fe oxides Entisols Geoaccumulation index Vertisols 

Notes

Acknowledgments

Special thanks to the owners of the sampled fields that supplied the soil samples. MGG is a member of CICyT in CONICET, the National Science Foundation of Argentina. LEVA wants to thank the Mexican Research Council (CONACYT) for receiving a scholarship for doing his master study. We are especially grateful to the anonymous reviewers for suggesting significant improvements to this manuscript.

Funding information

This research received a financial support by the Secretaría de Educación Pública (SEP) through the project PRODEP 2015–2016.

References

  1. Alloway BJ (2013) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer, UKCrossRefGoogle Scholar
  2. Arco-Lázaro E, Agudo I, Clemente R, Bernal MP (2016) Arsenic(V) adsorption-desorption in agricultural and mine soils: effects of organic matter addition and phosphate competition. Environ Pollut 216:71–79CrossRefGoogle Scholar
  3. Armienta MA, Segovia N (2008) Arsenic and fluoride in the groundwater of Mexico. Environ Geochem Health 30:345–353CrossRefGoogle Scholar
  4. Bhattacharya P, Chatterjee D, Jacks G (1997) Occurrence of arsenic-contaminated groundwater in alluvial aquifers from delta plains, eastern India: options for safe drinking water supply. Int J Water Resour Dev 13:79.92CrossRefGoogle Scholar
  5. Bundschuh J, Giménez Forcada E, Guérèquiz R et al (2008) Fuentes geogénicas de arsénico y su liberación al medio ambiente. In: Bundschuh J, Pérez Carrera A, Litter M (eds) Distribución del Arsénico en las regiones Ibérica e Iberoamericana. CYTED, Iberoarsen, pp 33–48Google Scholar
  6. Chen M, Ma LQ, Harris WG (2002) Arsenic concentrations in Florida surface soils: influence of soil types and properties. Soil Sci Sc Am J 66:632–640CrossRefGoogle Scholar
  7. Chi Z, Xie X, Pi K et al (2018) The influence of irrigation-induced water table fluctuation on iron redistribution and arsenic immobilization within the unsaturation zone. Sci Total Environ 637–638:191–199CrossRefGoogle Scholar
  8. Coker VS, Gault AG, Pearce CI, van der Laan G, Telling ND, Charnock JM, Polya DA, Lloyd JR (2006) XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite. Environ Sci Technol 40(24):7745–7750CrossRefGoogle Scholar
  9. Ferrari L (2000) Avances en el conocimiento de la Faja Volcánica Transmexicana durante la última década. Boletín de la Sociedad Geológica Mexicana LIII 53:84–92CrossRefGoogle Scholar
  10. Garcia MG, Borgnino L, Bia G et al (2014) Mechanisms of arsenic and fluoride release from Chacopampean sediments (Argentina). Int J Environ Health 7(1):41–57CrossRefGoogle Scholar
  11. Giménez J, Martínez M, de Pablo J et al (2007) Arsenic sorption onto natural hematite, magnetite, and goethite. J Hazard Mater 141:575–580CrossRefGoogle Scholar
  12. Goldberg S (2002) Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci Soc Am J 66:413–421CrossRefGoogle Scholar
  13. Hatfield JL, Sauer TJ, Cruse RM (2017) Soil: the forgotten piece of the water, food, energy nexus. Adv Agron 143:1–46CrossRefGoogle Scholar
  14. He YT, Fitzmaurice AG, Bilgin A, Choi S, O’Day P, Horst J, Harrington J, James Reisinger H, Burris DR, Hering JG (2010) Geochemical processes controlling arsenic mobility in groundwater: a case study of arsenic mobilization and natural attenuation. Appl Geochem 25(1):69–80CrossRefGoogle Scholar
  15. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25(1):101–110CrossRefGoogle Scholar
  16. Hernández-Silva G, Solorio-Munguía J, Vermeersch MM et al (2005) Monitoreo de contaminantes en las cuencas de los ríos Guanajuato, San Juan de Otates y Turbio y su impacto en el río Lerma, estado de Guanajuato, México. Universidad Nacional Autónoma de México, MéxicoGoogle Scholar
  17. Hossain MB, Jahiruddin M, Panaullah Panaullah GM, Loeppert RH, Islam MR, Duxbury JM (2008) Spatial variability of arsenic concentration in soils and plants, and its relationship with iron, manganese and phosphorus. Environ Pollut156:739–744Google Scholar
  18. Jiang QQ, Singh BR (1994) Effect of different forms and sources of arsenic on crop yield and arsenic concentration. Water Air Soil Pollut 74:321–343Google Scholar
  19. Keimowitz AR, Simpson HJ, Stute M, Datta S, Chillrud SN, Ross J, Tsang M (2005) Naturally occurring arsenic: mobilization at a landfill in Maine and implications for remediation. Appl Geochem 20(11):1985–2002CrossRefGoogle Scholar
  20. Lindbo D, Havlin J, Kozlowski D, Robibson C (2012) Know soil know life. Soil Science Society of America, MadisonGoogle Scholar
  21. López-Pérez ME, Del Rincón-Castro MC, Muñoz-Torres C et al (2017) Evaluación de la contaminación por elementos traza en suelos agrícolas del suroeste de Guanajuato, México. Acta Univ 27:10–21CrossRefGoogle Scholar
  22. Mandal B, Suzuki K (2002) Arsenic round the world: a review. Talanta 58:201–235CrossRefGoogle Scholar
  23. Mar Camacho L, Gutiérrez M, Alarcón-Herrera MT et al (2011) Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA. Chemosphere 83:211–225CrossRefGoogle Scholar
  24. Miranda-Avilés R, Puy-Alquiza MJ, Pérez Arvizu O (2012) Anthropogenic metal content and natural background of overbanks sediments from the mining district of Guanajuato, Mexico. Soil Sediment Contam 21:604–624CrossRefGoogle Scholar
  25. Morales I, Villanueva-Estrada RE, Rodríguez R, Armienta MA (2015) Geological, hydrological, and geothermal factors associated to the origin of arsenic, fluoride, and groundwater, temperature in a volcanic environment “El Bajío Guanajuatense”, Mexico. Environ Earth Sci 74:5403–5415CrossRefGoogle Scholar
  26. Morales I, Rodríguez R, Armienta MA, Villanueva-Estrada RE (2016) The origin of groundwater arsenic and fluorine in a volcanic sedimentary basin in central Mexico: a hydrochemistry hypothesis. Hydrogeol J 24:1029–1044CrossRefGoogle Scholar
  27. Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. Gejournal 2(3):108–118Google Scholar
  28. Nieto-Samaniego AF, Ojeda-García AC, Alaniz-Álvarez SA, Xu S (2012) Geología de la región de Salamanca, Guanajuato, México. Bol Soc Geol Mex 64:411–425Google Scholar
  29. Nieva NE, Borgnino L, Locati F, García MG (2016) Mineralogical control on arsenic release during sediment-water interaction in abandoned mine wastes from the Argentina Puna. Sci Total Environ 550:1141–1151CrossRefGoogle Scholar
  30. Otero XL, Tierra W, Atiaga O, Guanoluisa D, Nunes LM, Ferreira TO, Ruales J (2016) Arsenic in rice agrosystems (water, soil and rice plants) in Guayas and Los Ríos provinces, Ecuador. Sci Total Environ 573:778–787CrossRefGoogle Scholar
  31. Porta J, López-Acevedo M, Poch MR (2010) Introducción a la Edafología, Uso y protección de suelos. Mundi-Prensa, MadridGoogle Scholar
  32. Razo I, Carrizales L, Castro J, Díaz-Barriga F, Monroy M (2004) Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Pollut 152:129–152CrossRefGoogle Scholar
  33. Rodríguez R, Morales-Arredondo I, Rodríguez I (2016) Geological differentiation of groundwater threshold concentrations of arsenic, vanadium and fluorine in el bajío Guanajuatense, Mexico. Geofis Int 55-1:5–15Google Scholar
  34. Rudnick RL, Gao S (2003) Composition of the continental crust. Treatise on Geochemistry 3: 1–64Google Scholar
  35. Sarkar A, Paul B (2016) The global menace of arsenic and its conventional remediation -a critical review. Chemosphere 158:37–49CrossRefGoogle Scholar
  36. Secretaría de Economía (2001) Norma mexicana NMX-AA-036-SCFI-2001. Diario Oficial de la Federación (DOF), 1 de agosto de 2001Google Scholar
  37. SEMARNAT (1994) Norma Oficial Mexicana NOM-127-SSA1–1994. Diario Oficial de la Federación (DOF), 17 de octubre de 2000Google Scholar
  38. SEMARNAT (2000) Norma Oficial Mexicana NOM-021-SEMARNAT-2000. Diario Oficial de la Federación (DOF), 17 de octubre de 2000Google Scholar
  39. SEMARNAT (2015) Secretaría de Medio Ambiente y Recursos Naturales, Informe de la Situación del Medio Ambiente en México. Compendio de Estadísticas Ambientales Indicadores Clave, de Desempeño Ambiental y de Crecimiento Verde. http://apps1.semarnat.gob.mx/dgeia/informe15/. Accessed 20 May 2018
  40. Soil Survey Staff (2014) Keys to soil taxonomy, 12th edn. USDA-Natural Resources Conservation Service, Washington DCGoogle Scholar
  41. Sun J, Chillrud SN, Mailloux BJ, Stute M, Singh R, Dong H, Lepre CJ, Bostick BC (2016) Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate. Chemosphere 144:1106–1115CrossRefGoogle Scholar
  42. Tóth G, Hermann T, Da Silva MR, Montanarella L (2016) Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int 88:299–309CrossRefGoogle Scholar
  43. U.S. EPA (1996) “Method 3050B: acid digestion of sediments, sludges, and soils,” Revision 2. Washington, DCGoogle Scholar
  44. U.S. EPA (2000) “Method 6010C (SW-846): inductively coupled plasma-atomic emission spectrometry,” Revision 3. Washington, DCGoogle Scholar
  45. U.S. EPA (2007) “Method 3051A (SW-846): microwave assisted acid digestion of sediments, sludges, and oils,” Revision 1. Washington, DCGoogle Scholar
  46. Walsh LM, Sumner ME, Keeney DR (1977) Occurrence and distribution of arsenic in soils and plants. Environ Health Perspect 19:67–71CrossRefGoogle Scholar
  47. WHO (2004) Guidelines for drinking water quality, 3th edn. World Health Organization, GenevaGoogle Scholar
  48. Yan-Chu H (1994) Arsenic distribution in soils. In: Nriagu JO (ed) Arsenic in the environment. Wiley, New York, pp 17–49Google Scholar
  49. Zeng H, Fisher B, Giammar DE (2008) Individual and competitive adsorption of arsenate and phosphate to a high-surface-area Iron oxide-based sorbent. Environ Sci Technol 42:147–152CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Gabriela A. Zanor
    • 1
    Email author
  • María Gabriela García
    • 2
  • Luis Eduardo Venegas-Aguilera
    • 1
  • Adriana Saldaña-Robles
    • 3
  • Noé Saldaña-Robles
    • 3
  • Oscar A. Martínez-Jaime
    • 4
  • José Jesús N. Segoviano-Garfias
    • 1
  • Luis F. Ramírez-Santoyo
    • 4
  1. 1.Departamento de Ciencias Ambientales, División de Ciencias de la Vida (DICIVA), Campus Irapuato-SalamancaUniversidad de GuanajuatoGuanajuatoMexico
  2. 2.Centro de Investigaciones en Ciencias de la Tierra (CICTERRA)-CONICETUniversidad Nacional de CórdobaCórdobaArgentina
  3. 3.Departamento de Ingeniería Agrícola, División de Ciencias de la Vida (DICIVA), Campus Irapuato-SalamancaUniversidad de GuanajuatoGuanajuatoMexico
  4. 4.Departamento de Agronomía, División de Ciencias de la Vida (DICIVA), Campus Irapuato-SalamancaUniversidad de GuanajuatoGuanajuatoMexico

Personalised recommendations