Journal of Soils and Sediments

, Volume 19, Issue 8, pp 3193–3203 | Cite as

Early colonization of constructed Technosols by macro-invertebrates

  • Mickaël HeddeEmail author
  • Johanne Nahmani
  • Geoffroy Séré
  • Apolline Auclerc
  • Jerome Cortet
SUITMA 9: Urbanization — Challenges and Opportunities for Soil Functions and Ecosystem Services



Anthropogenic activities lead to soil degradation and loss of biodiversity, but also contribute to the creation of novel ecosystems. Pedological engineering aims at constructing Technosols with wastes and by-products to reclaim derelict sites and to restore physico-chemical functions.

Materials and methods

The biological (dynamics of soil and epigeic macroinvertebrate assemblages) and physical (chemical and physical fertility) properties have been studied in two constructed Technosols under grassland during 4 years after their implementation.

Results and discussion

The soils exhibited a moderate chemical fertility (high organic matter and calcium carbonate contents, low nitrogen content) and a good physical fertility that only slightly evolved over the monitored period. Macro-invertebrates have colonized these soils. This colonization was characterized by an increasing number of individuals and species over time. The diversity and abundance values fell within those quoted in the literature for similar natural soils. Epigeic invertebrates presented a succession, indirectly linked to changes in soil parameters. No succession was recorded for soil invertebrates. However, the proportion of soil detritivores, an important functional group for soil evolution, grew consistently. Questions about soil invertebrates’ functional complementarity/redundancy emerge in such artificially created ecosystem.


The constructed Technosol, on which a meadow was sown and well-established after 4 years, can host numerous soil invertebrates. In addition, an increase in diversity was monitored throughout the duration of the study.


Brownfield management Earthworms Ground beetles Spiders Succession 



We thank the students and technical staff of the UMR Ecosys (Ghislaine Delarue, Jean-Pierre Pétraud, Jodie Thénard, Antonine Poitevin, Fabien Abonnel, Estelle Boudon, Sylvain Corbel, Pierre-Antoine Precigout) and of the UMR LSE (Françoise Watteau, Jean-Claude Bégin, Adeline Bouchard, Romain Goudon, Alain Rakoto) units for their help in invertebrate sampling. Thanks to GISFI (Noele Raoult, Cindy Messana, and Lucas Charrois) for the organization of sampling at the Homécourt station of the French Research Center for Soil Pollution and Remediation.

Funding information

This project was supported by a GESSOL IV program “Fonctions environnementales des sols et gestion du patrimoine sol” funded by the French Ministry of Ecology in cooperation with the ADEME (CON - 2009 - no. S.6 – 0006653).

Supplementary material

11368_2018_2142_MOESM1_ESM.docx (36 kb)
ESM 1 (DOCX 36 kb)


  1. Briones MJI (2014) Soil fauna and soil functions: a jigsaw puzzle. Front Environ Sci 2.
  2. Butt KR, Lowe CN, Frederickson J, Moffat AJ (2004) The development of sustainable earthworm populations at Calvert landfill site, UK. Land Degrad Dev 15:27–36CrossRefGoogle Scholar
  3. Chao A, Gotelli N, Hsieh TC, Sander EL, He MK, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67CrossRefGoogle Scholar
  4. Darmendrail D, Baize D, Barbier J, Freyssinet P, Mouvet C, Salpéteur I, Wavrer P (2000) Fonds géochimiques naturel : Etat des connaissances à l’échelle nationale. BRGM/RP-50158-FR; pp 93Google Scholar
  5. de Araújo ASF, Eisenhauer N, Nunes LAPL, Leite LFC, Cesarz S (2015) Soil surface-active fauna in degraded and restored lands of Northeast Brazil. Land Degrad Dev 26:1–8CrossRefGoogle Scholar
  6. De Jong Y, Verbeek M, Michelsen V, Bjørn P. de P, Los W, Steeman F, … Penev L (2014) Fauna Europaea – all European animal species on the web. Biodiversity Data Journal, (2), e4034. Advance online publication.
  7. De Kimpe C, Morel JL (2000) Urban soils management: a growing concern. Soil Sci Soc Am J 165:31–40CrossRefGoogle Scholar
  8. Decaëns T, Margerie P, Renault J, Bureau F, Aubert M, Hedde M (2011) Niche overlap and species assemblage dynamics in an ageing pasture gradient in North-Western France. Acta Oecol 37:212–219CrossRefGoogle Scholar
  9. Deeb M, Grimaldi M, Lerch TZ, Pando A, Podwojewski P, Blouin M (2016) Influence of organic matter content on hydro-structural properties of constructed Technosols. Pedosphere 26:486–498CrossRefGoogle Scholar
  10. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Software 22:1–20CrossRefGoogle Scholar
  11. Frouz J, Keplin B, Pižl V, Tajovský K, Starý J, Lukešová A, Nováková A, Balı́k V, Háněl L, Materna J, Düker C, Chalupský J, Rusek J, Heinkele T (2001) Soil biota and upper soil layer development in two contrasting post-mining chronosequences. Ecol Eng 17:275–284CrossRefGoogle Scholar
  12. Garnier E, Cortez J, Billes G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecol Lett 85:2630–2637CrossRefGoogle Scholar
  13. Gleason HA (1917) The structure and development of the plant association. Bull Torrey Bot Club 44:463–481CrossRefGoogle Scholar
  14. Gotelli NJ, Chao A (2013) Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. In: Levin SA (ed) Encyclopedia of biodiversity. Academic Press, Waltham. CrossRefGoogle Scholar
  15. Grosbellet C, Vidal-Beaudet L, Caubel V, Charpentier S (2011) Improvement of soil structure formation by degradation of coarse organic matter. Geoderma 162:27–38CrossRefGoogle Scholar
  16. Hafeez F, Martin-Laurent F, Béguet J, Bru D, Cortet J, Schwartz C, Morel JL, Philippot L (2012) Taxonomic and functional characterization of microbial communities in Technosols constructed for remediation of a contaminated industrial wasteland. J Soils Sediments 12:1396–1406CrossRefGoogle Scholar
  17. Hedde M, Bureau F, Chauvat M, Decaëns T (2010) Patterns and mechanisms responsible for the relationship between the diversity of litter macro-invertebrates and leaf degradation. Basic Appl Ecol 11:35–44CrossRefGoogle Scholar
  18. Hedde M, van Oort F, Renouf E, Thénard J, Lamy I (2013) Dynamics of soil fauna after plantation of perennial energy crops on polluted soils. Appl Soil Ecol 66:29–39CrossRefGoogle Scholar
  19. Heemsbergen DA, Berg MP, Loreau M, van Hal JR, Faber JH, Verhoef HA (2004) Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306:1019–1020Google Scholar
  20. Hooper D, Chapin F, Ewel J, Hector A, Inchausti P, Lavorel S, Lawton J, Lodge D, Loreau M, Naeem S, Schmid B, Setala H, Symstad A, Vandermeer J, Wardle D (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  21. IUSS (2014) World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports vol. 106. FAO, Working Group WRB, Rome, Italy, ISBN: 978-92-5-108369-7Google Scholar
  22. Jangorzo NS, Watteau F, Schwartz C (2013) Evolution of the pore structure of constructed Technosols during early pedogenesis quantified by image analysis. Geoderma 207:180–192CrossRefGoogle Scholar
  23. Jangorzo N, Watteau F, Hajos D, Schwartz C (2014) Nondestructive monitoring of the effect of biological activity on the pedogenesis of a Technosol. J Soils Sediments 15:1705–1715CrossRefGoogle Scholar
  24. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386CrossRefGoogle Scholar
  25. Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193Google Scholar
  26. Marcon E, Hérault B (2013) entropart, an R package to partition diversity.
  27. McArdle B, Anderson M (2001) Fitting multivariate models to community data: a comment on distance based redundancy analysis. Ecol 82:290–297CrossRefGoogle Scholar
  28. Morel JL, Schwartz C, Florentin L, De Kimpe C (2005) Urban soils. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier Ltd, pp 202–208Google Scholar
  29. Morel JL, Chenu C, Lorenz K (2015) Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs). J Soils Sediments 15:1659–1666CrossRefGoogle Scholar
  30. NF ISO 10390 (2005) Qualité du sol – Détermination du pHGoogle Scholar
  31. NF ISO 10693 (1995) Soil quality – Determination of carbonate content by volumetric methodGoogle Scholar
  32. NF ISO 10694 (1995) Qualité du sol – Dosage du carbone organique et du carbone total après combustion sèche (analyse élémentaire)Google Scholar
  33. NF ISO 11263 (1994) Soil quality – Determination of phosphorus by spectrometric determination of phosphorus soluble in sodium hydrogen carbonate solution. ISO, VernierGoogle Scholar
  34. NF X31-107 (2003) Qualité du sol – Détermination de la distribution granulométrique des particules du sol par la méthode à la pipetteGoogle Scholar
  35. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2011) vegan: community ecology package. pp. URL:
  36. Pey B, Cortet J, Watteau F, Cheynier K, Schwartz C (2013) Structure of earthworm burrows related to organic matter of a constructed Technosol. Geoderma 202:103–111CrossRefGoogle Scholar
  37. Pey B, Cortet J, Capowiez Y, Nahmani J, Watteau F, Schwartz C (2014) Technosol composition affects Lumbricus terrestris surface cast composition and production. Ecol Eng 67:238–247CrossRefGoogle Scholar
  38. Pinheiro J, Bates D, DebRoy S, Sarkar D and R Core Team (2016) nlme: linear and nonlinear mixed effects models. R package version 3.1–128, URL:
  39. Pižl V (1992) Succession of earthworm populations in abandoned fields. Soil Biol Biochem 24:1623–1628CrossRefGoogle Scholar
  40. Puga JRL, Abrantes NJC, de Oliveira MJS, Vieira DCS, Faria SR, Gonçalves F, Keizer JJ (2016) Long-term impacts of post-fire mulching on ground-dwelling arthropod communities in a Eucalypt plantation. Land Degrad Dev, 28, 1156, 1162
  41. Rokia S, Séré G, Schwartz C, Deeb M, Fournier F, Nehls T, Damas O, Vidal-Beaudet L (2014) Modelling agronomic properties of Technosols constructed with urban wastes. Waste Manag 34:2155–2162CrossRefGoogle Scholar
  42. Roubíčková A, Frouz J (2014) Performance of the earthworm Aporrectodea caliginosa on unreclaimed spoil heaps at different successional stages. Eur J Soil Biol 65:57–61CrossRefGoogle Scholar
  43. Seeber J, Seeber GUH, Kössler W, Langel R, Scheu S, Meyer E (2005) Abundance and trophic structure of macrodecomposers on alpine pastureland (Central Alps, Tyrol): effects of abandonment of pasturing. Pedobiol 49:221–228CrossRefGoogle Scholar
  44. Séré G, Schwartz C, Ouvrard S, Sauvage C, Renat JC, Morel JL (2008) Soil construction: a first step for ecological reclamation of derelict lands. J Soils Sediments 8:130–136CrossRefGoogle Scholar
  45. Séré G, Schwartz C, Ouvrard S, Renat JC, Watteau F, Villemin G, Morel JL (2010) Early pedogenic evolution of constructed Technosols. J Soils Sediments 10:1246–1254CrossRefGoogle Scholar
  46. Yilmaz D, Cannavo P, Séré G, Vidal-Beaudet L, Legret M, Damas O, Peyneau P-E (2018) Physical properties of structural soils containing waste materials to achieve urban greening. J Soils Sediments 18:442.255CrossRefGoogle Scholar
  47. Zimmer M, Kautz G, Topp W (2005) Do woodlice and earthworms interact synergistically in leaf litter decomposition? Funct Ecol 19:7–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mickaël Hedde
    • 1
    • 2
    Email author
  • Johanne Nahmani
    • 3
  • Geoffroy Séré
    • 4
    • 5
  • Apolline Auclerc
    • 4
    • 5
  • Jerome Cortet
    • 6
  1. 1.INRA, UMR 1402 ECOSYS RD 10Versailles CedexFrance
  2. 2.INRA, UMR 1222 Eco&SolsMontpellierFrance
  3. 3.CNRS, UMR 5175 CEFEMontpellier cedex 5France
  4. 4.INRA, LSE, UMR 1120Vandœuvre-lès-NancyFrance
  5. 5.LSE, UMR 1120Université de LorraineVandœuvre-lès-NancyFrance
  6. 6.UMR CEFE 5175, EPHE, Université Paul-Valéry MontpellierUniversité de MontpellierMontpellier CedexFrance

Personalised recommendations