Advertisement

Journal of Soils and Sediments

, Volume 19, Issue 1, pp 451–466 | Cite as

Check dams and sediment control: final results of a case study in the upper Corneja River (Central Spain)

  • Virginia Díaz-Gutiérrez
  • Jorge Mongil-MansoEmail author
  • Joaquín Navarro-Hevia
  • Iván Ramos-Díez
Sediments, Sec 3 • Hillslope and River Basin Sediment Dynamics • Research Article

Abstract

Purpose

The sediment yield and erosion rate in an area can be estimated by calculating the volume of sediment retained by check dams. However, results can show unrealistic and imprecise conclusions if the sediment volume is not measured accurately, as tolerable erosion rates are usually below 10 t ha−1 year−1.

Materials and methods

Our previous research developed a topographic method (the Sections Method) for measuring the sediment wedges created by check dams and the sediment yield with a high degree of precision to avoid the aforementioned problem. Until now, however, it had only been tested for a few check dams. Here, we present a final and complete analysis applying this method to 113 check dams in a granitic restored area in the upper basin of the Corneja River (Central Spain), under a continental Mediterranean climate, to estimate an accurate mean erosion rate over 50 years, as well as the downstream influence of the check dams.

Results and discussion

Our results show that the check dams trapped 5365.93 m3 sediment, which represents a sediment export of 0.096 t ha−1 year−1 and a total sediment yield of 5.6 t ha−1 year−1. These values are significantly higher (> 18%) than those obtained with other, simpler geometric methods currently in use, such as the Prism and Pyramid Methods, as we have already argued in previous papers. It is therefore important to take this issue into account. Moreover, we confirmed a number of morphological changes. As a result of the check dam effect, the slopes of the streambed are 11% lower than the original streambed slope, with a maximum reduction of up to 39%, leading to higher infiltration rates in the streambeds, lower energy waterflows, and flood lamination. Furthermore, the sediment wedges created a new land surface of over 5000 m2 permitting the development of agroforestry uses such as riparian woods, orchards, cropland, or pastureland.

Conclusions

These final results show that check dams were highly effective and played a positive role in retaining and controlling sediment.

Keywords

Erosion Forest restoration Gully restoration Sediment yield Trap efficiency 

References

  1. Arnoldus HMJ (1977) Predicting soil losses due to sheet and rill erosion. FAO conservation Guide 1:99–104Google Scholar
  2. Azcarretazábal D (1964) Proyecto de repoblación forestal y restauración de laderas en la cuenca río Corneja. Tramo I. Término municipal de Tórtoles. Confederación Hidrográfica del Duero. Ministerio de Obras Públicas, SpainGoogle Scholar
  3. Bellin N, Vanacker V, Van Wesemael B, Solé A, Bakker M (2011) Natural and anthropogenic controls on soil erosion in the Internal Betic Cordillera (southeast Spain). Catena 87:190–200CrossRefGoogle Scholar
  4. Belmonte F, Romero A, Martínez M (2005) Erosión en cauces afectados por obras de corrección hidrológica (Cuenca del Río Quípar, Murcia). Papeles de Geografía 41-42:71–83Google Scholar
  5. Billi P, Dramis F (2003) Geomorphological investigation on gully erosion in the Rift Valley and the northern highlands of Ethiopia. Catena 50:353–368CrossRefGoogle Scholar
  6. Birkinshaw SJ, Bathurst JC (2006) Model study of the relationship between sediment yield and river basin area. Earth Surf Proc Land 31:750–761CrossRefGoogle Scholar
  7. Bochet E, García P, Tormo J (2010) How can we control erosion of roadslopes in semiarid Mediterranean areas? Soil improvement and native plant establishment. Land Degrad Develop 21:110–121CrossRefGoogle Scholar
  8. Boix-Fayos C, González G, López F, Castillo VM (2007) Effects of check dams, reforestation and land-use changes on river channel morphology: case study of The Rogativa Catchment (Murcia, Spain). Geomorphology 91:103–123CrossRefGoogle Scholar
  9. Brevik EC, Cerdà A, Mataix-Solera J, Pereg L, Quinton JN, Six J, Van Oost K (2015) The interdisciplinary nature of soil. Soil 1:117–129CrossRefGoogle Scholar
  10. Brignoli ML, Espa P, Batalla RJ (2017) Sediment transport below a small alpine reservoir desilted by controlled flushing: field assessment and one-dimensional numerical simulation. J Soils Sediments 17:2187–2201CrossRefGoogle Scholar
  11. Bryan R, Yair A (1982) Badland geomorphology and piping. University Press, CambridgeGoogle Scholar
  12. Brown CB, Jarvis CS (1943) Discussion of sedimentation in reservoirs. By J. Witzig, Proc Amer Soc Civ Eng 69:1493–1500Google Scholar
  13. Bussi G, Rodríguez X, Francés DF, Benito G, Sánchez Y, Sopeña A (2013) Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment. Hydrol Earth Syst Sci 17:3339–3354CrossRefGoogle Scholar
  14. Casali J, Bennet SJ, Robinson KM (2000) Processes of ephemeral gully erosion. Int J Sediment Res 15:31–41Google Scholar
  15. Castillo VM, Mosch W, Conesa C, Gonzalez G, Navarro JA, López F (2007) Effectiveness and geomorphological impacts of check dams for soil erosion control in a semiarid Mediterranean catchment: El Cárcavo (Murcia, Spain). Catena 70:416–427CrossRefGoogle Scholar
  16. Chanson H (2004) The hydraulics of open channel flow: an introduction. Elsevier Butterworth-Heinemann, Oxford, UKGoogle Scholar
  17. CHD (2013) ICA water quality network. Water quality for waters with special protection for fish life. http://www.chduero.es/Inicio/ElaguaenlacuencaCalidad/Redesdecontroldecalidad/Aguassuperficiales
  18. Clarke ML, Rendell HM (2010) Climate-driven decrease in erosion in extant Mediterranean badlands. Earth Surf Process Landform 35:1281–1288CrossRefGoogle Scholar
  19. Conesa C (2005) Les “ramblas” du Sud-est Espagnol: Systémes hydromorphologiques en milieu méditerranéen sec. Z Geomorphol 49:205–224Google Scholar
  20. Conesa C, García R (2007) Erosión y diques de retención en la Cuenca Mediterránea. Efectividad hidrogeomorfológica de los diques de retención en cuencas torrenciales del Sureste Español. Fundación Instituto Euromediterráneo del Agua. MurciaGoogle Scholar
  21. Conesa C, García R (2009) Local scour estimation at check dams in torrential streams in south east Spain. Geogr Ann 91A:159–177CrossRefGoogle Scholar
  22. De Vente J, Poesen J, Arabkhedri M, Verstraeten G (2007) The sediment delivery problem revisited. Prog Phys Geogr 31:155–178CrossRefGoogle Scholar
  23. Díaz V, Mongil J, Navarro J (2014a) Proposal of a new methodology to assess the effectiveness of check-dams. Cuad Invest Geog 40:169–190Google Scholar
  24. Díaz V, Mongil J, Navarro J (2014b) Topographical surveying for improved assessment of sediment retention in check dams applied to a Mediterranean badlands restoration site (Central Spain). J Soils Sediments 14:2045–2056CrossRefGoogle Scholar
  25. EU (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J Eur Communities 22:12–2000Google Scholar
  26. Fang R (1999) Outlook of the check-dam system agriculture in Shanxi Province. Soil Water Conserv China 169:4–7Google Scholar
  27. FAO (1979) A provisional methodology for soil degradation assessment. Roma, ItalyGoogle Scholar
  28. Fournier F (1960) Climat et érosion. Ed. Presses Universitaires de France. Paris, FranceGoogle Scholar
  29. Frankl A, Poesen J, Haile M, Deckers J, Nyssen J (2013) Quantifying long-term changes in gully networks and volumes in dryland environments: the case of Northern Ethiopia. Geomorphology 201:254–263CrossRefGoogle Scholar
  30. Gallart F, Marignani M, Pérez-Gallego N, Santi E, Maccherini S (2013) Thirty years of studies on badlands, from physical to vegetational approaches. A succinct review. Catena 106:4–11CrossRefGoogle Scholar
  31. García-Ruiz JM, Nadal-Romero E, Lana-Renault N, Beguería S (2013) Erosion in Mediterranean landscapes: changes and future challenges. Geomorphology 198:20–36CrossRefGoogle Scholar
  32. García-Ruiz JM, Beguería S, Nadal-Romero E, González-Hidalgo JC, Lana-Renault N, Sanjuán Y (2015) A meta-analysis of soil erosion rates across the world. Geomorphology 239:160–173CrossRefGoogle Scholar
  33. González-Pelayo O, Andreu V, Gimeno-García E, Campo J, Rubio JL (2010) Effects of fire and vegetation cover on hydrological characteristics of a Mediterranean shrubland soil. Hydrol Process 24:1504–1513CrossRefGoogle Scholar
  34. Götz A (2001) Flood protection: a common goal for federal, cantonal and municipal authorities. Federal Office for Water and Geology. BielGoogle Scholar
  35. Haregeweyn N, Poesen J, Nyssen J, Govers G, Verstraeten G, de Vente J, Deckers J, Moeyersons J, Haile M (2008) Sediment yield variability in northern Ethiopia: a quantitative analysis of its controlling factors. Catena 75:65–76CrossRefGoogle Scholar
  36. Hudson NW (1995) Soil conservation, Third edn. BT Batsford Limited, London, p 391Google Scholar
  37. ICONA (1988) Mapa de estados erosivos 1983–1988. Instituto para la Conservación de la Naturaleza (Ministerio de Agricultura, Pesca y Alimentación). MadridGoogle Scholar
  38. IGME (2008) Mapa Geológico de España. Escala 1:50.000. Hoja 529: Santa María del Berrocal. Instituto Geológico y Minero de España. MadridGoogle Scholar
  39. Imwangana FM, Vandecasteele I, Trefois P, Ozer P, Moeyersons J (2015) The origin and control of mega-gullies in Kinshasa (D.R. Congo). Catena 125:38–49CrossRefGoogle Scholar
  40. Istanbulluoglu E, Tarboton DG, Pack RT, Luce C (2003) A sediment transport model for incision of gullies on steep topography. Water Resour Res 39:ESG 6–1–ESG 6–15CrossRefGoogle Scholar
  41. Keesstra SD, Maroulis J, Argaman E, Voogt A, Wittenberg L (2014) Effects of controlled fire on hydrology and erosion under simulated rainfall. Cuad Invest Geog 40:269–293Google Scholar
  42. Kelley HW (1990) Keeping the land alive. FAO Soils Bulletin 50. Roma, ItalyGoogle Scholar
  43. Lien HP (2003) Design of slit dams for controlling stony debris flow. Int J Sediment Res 18:74–87Google Scholar
  44. Marston RA, Dolan LS (1999) Effectiveness of sediment control structures relative to spatial pattern of upland soil loss in an arid watershed, Wyoming. Geomorphology 31:313–323CrossRefGoogle Scholar
  45. Martín-Rosales W, Pulido-Bosch A, Gisbert J, Vallejos A (2003) Sediment yield estimations and check dams in a semiarid area (Sierra de Gádor, southern Spain). In: De Boer D, Froehlich W, Mizuyama T, Pietroniro A (eds) Erosion prediction in ungauged basins: integrated methods and techniques. Proceedings of symposium HS01 Sapporo, IAHS Publ 279, pp 51–58Google Scholar
  46. Martínez-Casasnovas JA, Ramos MC, García D (2009) Effects of land-use changes in vegetation cover and sidewall erosion in a gully head of the Penedés region (Northeast Spain). Earth Surf Proc Land 34:1927–1937CrossRefGoogle Scholar
  47. May C, Gresswell R (2003) Processes and rates of sediment and wood accumulation in headwater streams of the Oregon coast range, USA. Earth Surf Process Landfrom 28:409–424CrossRefGoogle Scholar
  48. Molina A, Govers G, Van den Putte A, Poesen J, Vanacker V (2009) Assessing the reduction of the hydrological connectivity of gully systems through vegetation restoration: field experiments and numerical modeling. Hydrol Earth Syst Sci 13:1823–1836CrossRefGoogle Scholar
  49. Mongil J, Navarro J, Díaz V (2015) An ecological framework applied to a forest restoration program on badlands in Sierra de Ávila (Central Spain). Madera Bosques 21:11–19Google Scholar
  50. Mongil-Manso J, Navarro-Hevia J, Díaz-Gutiérrez V, Cruz V, Ramos-Diez I (2016) Badland forest restoration in Central Spain after 50 years under a Mediterranean-continental climate. Ecol Eng 97:313–326CrossRefGoogle Scholar
  51. Morgan RPC (2005) Soil erosion and conservation, Third edn. Blackwell Publishing, Malden, USAGoogle Scholar
  52. Naimi M, Tayaa M, Ouzizi S, Ilha CR, Kerby M (2003) Dynamique de l’érosion par ravinement dans un bassin versant du Rif occidental au Maroc. Sécheresse 14:95–100Google Scholar
  53. Poepple R, Keesstra SD, Hein T (2015) The geomorphic legacy of small dams. An Australian study. Anthropocene 10:43–55CrossRefGoogle Scholar
  54. Poesen J, Vandekerckhove L, Nachtergaele J, Oostwoud D, Verstraeten G, Van Wesemael B (2002) Gully erosion in dryland environments. In: Bull LJ, Kirkby MJ (eds) Dryland rivers: hydrology and geomorphology of semi-arid channels. Wiley, Chichester, UK, pp 229–262Google Scholar
  55. Porto P, Gessler J (1999) Ultimate bed slope in Calabrian streams upstream of check dams: field study. J Hydraul Eng-ASCE 125:1231–1242CrossRefGoogle Scholar
  56. Quiñonero JM, Nadeu E, Boix-Fayos C, de Vente J (2014) Evaluation of the effectiveness of forest restoration and check-dams to reduce catchment sediment yield. Land Degrad Dev 27:1018–1031CrossRefGoogle Scholar
  57. Ramos-Diez I, Navarro-Hevia J, San Martín R, Díaz-Gutiérrez V, Mongil-Manso J (2016a) Geometric models for measuring sediment wedge volume in retention check dams. Water Environ J 30:119–127CrossRefGoogle Scholar
  58. Ramos-Diez I, Navarro-Hevia J, San Martín R, Díaz-Gutiérrez V, Mongil-Manso J (2016b) Analysis of methods to determine the sediment retained by check dams and to estimate erosion rates in badlands. Environ Monit Assess 188:405CrossRefGoogle Scholar
  59. Ramos-Diez I, Navarro-Hevia J, San Martín R, Díaz-Gutiérrez V, Mongil-Manso J (2016c) Evaluating methods to quantify sediment volumes trapped behind check dams, Saldaña badlands (Spain). Int J Sediment Res 28:2446–2456Google Scholar
  60. Ramos-Diez I, Navarro-Hevia J, San Martín R, Mongil-Manso J (2017) Final analysis of the accuracy and precision of methods to calculate the sediment retained by check dams. Land Degrad Develop 28:2446–2456Google Scholar
  61. Remaitre A, Malet JP (2010) The effectiveness of torrent check dams to control channel instability: example of debris-flow events in Caly Chales. In: García CC, Lenzi MA (eds) Check dams, morphological adjustments and erosion control in torrential streams, Nova Science Publishers, pp 211–237Google Scholar
  62. Rey F, Burylo M (2013) Can bioengineering structures made of willow cuttings trap sediment in eroded marly gullies in a Mediterranean mountainous climate? Geomorphology 204:564–572CrossRefGoogle Scholar
  63. Romero A, Alonso F, Martínez M (2007a) Erosion rates obtained from check-dam sedimentation (SE Spain). A multi-method comparison. Catena 71:172–178CrossRefGoogle Scholar
  64. Romero A, Martínez M, Alonso F, Belmonte F (2007b) The importance of the presence of gullies in the production of sediments in semiarid areas (Murcia, Southeast of Spain). In: Casalí J, Giménez R (eds) Progress in gully erosion research. Universidad Pública de Navarra. Navarra, SpainGoogle Scholar
  65. Romero A, Marín P, Ortiz R (2012) Loss of soil fertility estimated from sediment trapped in check dams. South-eastern Spain. Catena 99:42–53CrossRefGoogle Scholar
  66. Roshani R (2003) Evaluating the effect of check dams on flood peaks to optimize the flood control measures (Kan case study in Iran). Thesis. International Institute for Geo-Information Science and Earth Observation, Enschede, pp 33–41Google Scholar
  67. SAS Institute (2008). SAS/STAT® 9.2 user’s guide. Cary, NC. Sas Institute Inc.Google Scholar
  68. Shit PK, Bhunia GS, Maiti R (2013) Assessing the performance of check dams to control rill-gully erosion: small catchment scale study. Int J Current Res 5:899–906Google Scholar
  69. Simon A, Darby S (1999) In: Darby SE, Simon A (eds) The nature and significance of incised river channels. Incised rivers John Wiley and Sons Ltd, Chichester, UKGoogle Scholar
  70. Singh J, Dhillon SS (1984) Agriculture Geography. Tata McGraw-Hill Publishing Company Limited, New Delhi, p 493Google Scholar
  71. Sobrino MA, Caba J (2012) Análisis comparativo a nivel técnico y económico de distintas tipologias de solución para la corrección hidrológica en las cabeceras de las cuencas de alta montaña en la Comarca del Berguedá. (Barcelona). VI Congreso Iberoamericano de control de la erosión y los sedimentos, Granada, SpainGoogle Scholar
  72. Sougnez N, Van Wesemael B, Vanacker V (2011) Low erosion rates measured for steep, sparsely vegetated catchments in southeast Spain. Catena 84:1–11CrossRefGoogle Scholar
  73. Stamey WL, Smith RM (1965) A conservation definition of erosion tolerance. Soil Sci 93:183–196Google Scholar
  74. Thornthwaite CW (1948) An approach towards a rational classification of climate. Geogr Rev 38:55–94CrossRefGoogle Scholar
  75. UNEP (1997). World atlas of desertification. 2nd ed. United Nations Environment Programme. London, UKGoogle Scholar
  76. USDA (2010) Keys to soil taxonomy. http://soils.usda.gov/technical/classification. Accessed 20 July 2017
  77. Valentin C, Poesen J, Li Y (2005) Gully erosion: impacts, factors and control. Catena 63:132–153CrossRefGoogle Scholar
  78. Van Andel TH, Runnels CN, Pope KO (1986) Five thousands years of land use and abuse in the Southern Argolid, Greece. Hesperia: J Am School Classical Studies at Athens 55:103–128CrossRefGoogle Scholar
  79. Vanacker V, Bellin N, Molina A, Kubik PW (2014) Erosion regulation as a function of human disturbances to vegetation cover: a conceptual model. Landsc Ecol 29:293–309CrossRefGoogle Scholar
  80. Verheijen FGA, Jones RJA, Rickson RJ, Smith CJ (2009) Tolerable versus actual soil erosion rates in Europe. Earth-Sci Rev 94:23–38CrossRefGoogle Scholar
  81. Verstraeten G, Poesen J (2000) Estimating trap efficiency of small reservoirs and ponds: methods and implications for the assessment of sediment yield. Prog Phys Geogr 24:219–251CrossRefGoogle Scholar
  82. Wohl E (2006) Human impacts to mountain streams. Geomorphology 79:217–248CrossRefGoogle Scholar
  83. Xu M, Wang G (2000) To accelerate the construction of check-dams in the Loess Plateau. Yellow River 22:26Google Scholar
  84. Xu XZ, Zhang HW, Zhang OY (2004) Development of check-dam systems in gullies on the Loess Plateau, China. Environ Sci Pol 7:79–86CrossRefGoogle Scholar
  85. Xu XZ, Zhang HW, Wang GQ, Peng Y, Zhang OY (2006) A laboratory study on the relative stability of the check dam system in the Loess Plateau, China. Land Degrad Dev 17:629–644CrossRefGoogle Scholar
  86. Yair A, Sharon D, Lavee H (1980) Trends in runoff and erosion processes over an arid limestone hillside, northern Negev. Israel Hydrol Sci J 25:243–255Google Scholar
  87. Zaimes GN, Schultz RC, Tufekcioglu M (2009) Gully and stream bank erosion in three pastures with different management in southeast Iowa. Jour Iowa Acad Sci 116:1–8Google Scholar
  88. Zeng QL, Yue ZQ, Yang ZF, Zhang XJ (2009) A case study of long-term field performance of check-dams in mitigation of soil erosion in Jiangjia Stream, China. Environ Geol 58:897–911CrossRefGoogle Scholar
  89. Zhao G, Mu X, Wen Z, Wang F, Gao P (2013) Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad Dev 24:499–510Google Scholar
  90. Zucca C, Canu A, Della Peruta R (2006) Effects of land use and landscape on spatial distribution and morphological features of gullies in an agropastoral area in Sardinia (Italy). Catena 68:87–95CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Virginia Díaz-Gutiérrez
    • 1
    • 2
  • Jorge Mongil-Manso
    • 1
    • 2
    Email author
  • Joaquín Navarro-Hevia
    • 2
    • 3
  • Iván Ramos-Díez
    • 2
    • 3
  1. 1.Hydrology and Conservation Research GroupCatholic University of ÁvilaÁvilaSpain
  2. 2.Forest, Water and Soil Research GroupPalenciaSpain
  3. 3.Department of Agricultural and Forestry EngineeringUniversity of ValladolidPalenciaSpain

Personalised recommendations