Skip to main content
Log in

Cobalt accumulation and antioxidant system in pakchois under chemical immobilization in fluvo-aquic soil

  • Soils, Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Cobalt (Co) is a toxic metal to the environment and human’s health. The purpose of the study is to achieve an investigation into the efficacy of calcium carbonate and cow dung for Co immobilization in fluvo-aquic soil, as well as their effects on the antioxidant system in plants.

Materials and methods

Calcium carbonate and cow dung were incorporated with the Co-polluted fluvo-aquic soil where pakchois (Brassica chinensis L.) were grown. Co concentration, superoxide dismutase (SOD) activity, catalase (CAT) activity, and malondialdehyde (MDA) concentration in the shoots of the mature plants were inspected.

Results and discussion

As calcium carbonate concentration rose (0 to 12 g kg−1), Co concentration in shoots of the plants decreased firstly and then increased again (P < 0.05), while the accumulation level of Co kept decreasing with cow dung concentration rising (P < 0.05). Under the amendment treatments, the SOD activity, CAT activity, and MDA concentration in the shoots were all positively correlated to the Co concentration in the plant tissue (r = 0.792, 0.904, and 0.807, P < 0.01), indicating the antioxidant system receptivity to the Co accumulation. The amendments in soil can alleviate the oxidative stress in pakchois owing to Co pollution. As calcium carbonate concentration ranged from 5.64 to 7.86 g kg−1, the parameters reached a maxima (minimum), respectfully.

Conclusions

Calcium carbonate and cow dung in fluvo-aquic soil are effective for Co immobilization and mitigating any pertinent oxidative stress in pakchoi plants. Calcium carbonate concentration within a range of 5.64 to 7.86 g·kg−1 will achieve optimum efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Ahmad M, Lee SS, Lim JE, Lee S, Cho JS, Moon DH, Hashimoto Y, Ok YS (2014) Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere 95:433–441

    Article  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  Google Scholar 

  • Baghaie A, Khoshgoftarmanesh A, Afyuni M (2016) Phytoavailability of lead (Pb) for corn and sunflower as affected by Pb-enriched sewage sludge and cow manure. J Residuals Sci Tech 13:251–257

    Article  Google Scholar 

  • Barrameda-Medina Y, Montesinos-Pereira D, Romero L, Ruiz JM, Blasco B (2014) Comparative study of the toxic effect of Zn in Lactuca sativa and Brassica oleracea plants: I. Growth, distribution, and accumulation of Zn, and metabolism of carboxylates. Environ Exp Bot 107:98–104

    Article  CAS  Google Scholar 

  • Beals C, Byl T (2014) Chemiluminescent examination of abiotic oxidative stress of watercress. Environ Toxicol Chem 33:798–803

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay and an assay applicable to PAGE. Anal Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Birke M, Reimann C, Rauch U, Ladenberger A, Demetriades A, Jähne-Klingberg F, Oorts K, Gosar M, Dinelli E, Halamić J (2017) GEMAS: cadmium distribution and its sources in agricultural and grazing land soil of Europe—original data versus clr-transformed data. J Geochem Explor 173:13–30

    Article  CAS  Google Scholar 

  • Cao X, Wahbi A, Ma L, Li B, Yang Y (2009) Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. J Hazard Mater 164:555–564

    Article  CAS  Google Scholar 

  • Chagnes A, Pospiech B (2013) A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. J Chem Technol Biot 88:1191–1199

    Article  CAS  Google Scholar 

  • Chang CY, Yu HY, Chen JJ, Li FB, Zhang HH, Liu CP (2014) Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China. Environ Monit Assess 186:1547–1560

    Article  CAS  Google Scholar 

  • Choi J (2009) Adsorption, bioavailability, and toxicity of cadmium to soil microorganisms. Geomicrobiol J 26:248–255

    Article  CAS  Google Scholar 

  • Evseev AV, Krasovskaya TM (2017) Toxic metals in soils of the Russian North. J Geochem Explor 174:128–131

    Article  CAS  Google Scholar 

  • Gheshlaghi ZT, McLaren RG, Adams JA (2008) Effect of treated zeolite, iron waste, and liming on phytoavailability of Zn, Cu, and Ni in long-term biosolids-amended soils. Aust J Soil Res 46:509–516

    Article  CAS  Google Scholar 

  • Guo G, Zhou Q, Ma LQ (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116:513–528

    Article  CAS  Google Scholar 

  • Guo XF, Wei ZB, Wu QT, Qiu JR, Zhou JL (2011) Cadmium and zinc accumulation in maize grain as affected by cultivars and chemical fixation amendments. Pedosphere 21:650–656

    Article  CAS  Google Scholar 

  • Gupta S, Nayek S, Saha RN, Satpati S (2008) Assessment of heavy metal accumulation in macrophyte, agricultural soil, and crop plants adjacent to discharge zone of sponge iron factory. Environ Geol 55:731–739

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Jakovljević T, Bubalo MC, Orlović S, Sedak M, Bilandžić N, Brozinčević I, Redovniković IR (2014) Adaptive response of poplar (Populus nigra L.) after prolonged Cd exposure period. Environ Sci Pollut R 21:3792–3802

    Article  Google Scholar 

  • Jala S, Goyal D (2006) Fly ash as a soil ameliorant for improving crop production-a review. Bioresour Technol 97:1136–1147

    Article  CAS  Google Scholar 

  • Jaleel CA, Jayakumar K, Zhao CX, Azooz MM (2009) Antioxidant potentials protect Vigna radiata (L.) Wilczek plants from soil cobalt stress and improve growth and pigment composition. Plant Omics 2:120–126

    Google Scholar 

  • Jensen AA, Tuchsen F (1990) Cobalt exposure and cancer risk. Crit Rev Toxicol 20:427–437

    Article  CAS  Google Scholar 

  • Khan MJ, Jones DL (2008) Chemical and organic immobilization treatments for reducing phytoavailability of heavy metals in copper-mine tailings. J Plant Nutr Soil Sci 171:908–916

    Article  CAS  Google Scholar 

  • Kızılkaya R, Aşkın T, Bayraklı B, Sağlam M (2004) Microbiological characteristics of soils contaminated with heavy metals. Eur J Soil Biol 40:95–102

    Article  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments - a review. Waste Manag 28:215–225

    Article  CAS  Google Scholar 

  • Li Y, Wang L, Yang L, Li H (2014) Dynamics of rhizosphere properties and antioxidative responses in wheat (Triticum aestivum L.) under cadmium stress. Ecotox Environ Safe 102:55–61

    Article  CAS  Google Scholar 

  • Lison D, De BM, Verougstraete V, Kirschvolders M (2001) Update on the genotoxicity and carcinogenicity of cobalt compounds. Occup Environ Med 58:619–625

    Article  CAS  Google Scholar 

  • Liu D, Zhang S, Chen Z, Qiu W (2010) Soil cadmium regulates antioxidases in sorghum. Agr Sci China 9:1475–1480

    Article  CAS  Google Scholar 

  • Liu W, Zhou Q, Zhang Z, Hua T, Cai Z (2011) Evaluation of cadmium phytoremediation potential in Chinese cabbage cultivars. J Agr Food Chem 59:8324–8330

    Article  CAS  Google Scholar 

  • Liu B, Huang Q, Cai H, Guo X, Wang T, Gui M (2015) Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China. Food Chem 188:294–300

    Article  CAS  Google Scholar 

  • Long XX, Yang XE, Ni WZ, Ye ZQ, He ZL, Calvert DV, Stoffella PJ (2003) Assessing zinc thresholds for phytotoxicity and potential dietary toxicity in selected vegetable crops. Commun Soil Sci Plan 34:1421–1434

    Article  CAS  Google Scholar 

  • Luo CL, Liu CP, Wang Y, Liu X, Li FB, Zhang C, Li XD (2011) Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. J Hazard Mater 186:481–490

    Article  CAS  Google Scholar 

  • Lwalaba JLW, Zvobgo G, Fu L, Zhang X, Mwamba TM, Muhammad N, Mundende RPM, Zhang G (2017) Alleviating effects of calcium on cobalt toxicity in two barley genotypes differing in cobalt tolerance. Ecotox Environ Safe 139:488–495

    Article  CAS  Google Scholar 

  • Mahmood S, Ishtiaq S, Yasin G, Irshad A (2016) Dose dependent rhizospheric Ni toxicity evaluation: membrane stability and antioxidant potential of Vigna species. Chil J Agr Res 76:378–384

    Article  Google Scholar 

  • Melamed R, Cao X, Chen M, Ma LQ (2003) Field assessment of lead immobilization in a contaminated soil after phosphate application. Sci Total Environ 305:117–127

    Article  CAS  Google Scholar 

  • Narwal RP, Singh BR (1998) Effect of organic materials on partitioning, extractability and plant uptake of metals in an alum shale soil. Water Air Soil Pollut 103:405–421

    Article  CAS  Google Scholar 

  • Ojuri OO, Taiwo OA, Oluwatuyi OE (2016) Heavy metal migration along a rural highway route: Ilesha-Akure roadside soil, southwestern, Nigeria. Global NEST J 18:742–760

    Google Scholar 

  • Rosen V, Chen Y (2014) The influence of compost addition on heavy metal distribution between operationally defined geochemical fractions and on metal accumulation in plant. J Soils Sediments 14:713–720

    Article  Google Scholar 

  • Sauni R, Linna A, Oksa P, Nordman H, Tuppurainen M, Uitti J (2010) Cobalt asthma - a case series from a cobalt plant. Occup Med 60:301–306

    Article  CAS  Google Scholar 

  • Schnürer J, Rosswall T (1982) Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Environ Microbiol 43:1256–1261

    Google Scholar 

  • Shao HB, Liang ZS, Shao MA, Sun Q (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.) Chemosphere 60:97–104

    Article  Google Scholar 

  • Shrivastava A, Barla A, Singh S, Mandraha S, Bose S (2017) Arsenic contamination in agricultural soils of Bengal deltaic region of West Bengal and its higher assimilation in monsoon rice. J Hazard Mater 324:526–534

    Article  CAS  Google Scholar 

  • Siebers N, Kruse J, Leinweber P (2013) Speciation of phosphorus and cadmium in a contaminated soil amended with bone char: sequential fractionations and XANES spectroscopy. Water Air Soil Pollut 224:1564–1576

    Article  Google Scholar 

  • Singh BK, Quince C, Macdonald CA, Khachane A, Thomas N, Al-Soud WA, Sørensen SJ, He Z, White D, Sinclair A, Crooks B, Zhou J, Campbell CD (2014) Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environ Microbiol 16:2408–2420

    Article  Google Scholar 

  • Sitte J, Löffler S, Burkhardt E, Goldfarb KC, Büchel G, Hazen TC, Küsel K (2015) Metals other than uranium affected microbial community composition in a historical uranium-mining site. Environ Sci Pollut R 22:19326–19341

    Article  CAS  Google Scholar 

  • Smičiklas I, Dimović S, Jović M, Milenković A, Šljivić-Ivanović M (2015) Evaluation study of cobalt(II) and strontium(II) sorption–desorption behavior for selection of soil remediation technology. Int J Environ Sci Technol 12:3853–3862

    Article  Google Scholar 

  • Smith LJ, Holmes AL, Kandpal SK, Mason MD, Zheng T, Wise JP (2014) The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells. Toxicol Appl Pharm 278:259–265

    Article  CAS  Google Scholar 

  • Suh M, Thompson CM, Brorby GP, Mittal L, Proctor DM (2016) Inhalation cancer risk assessment of cobalt metal. Regul Toxicol Pharmacol 79:74–82

    Article  CAS  Google Scholar 

  • Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC, Sahi SV (2017) Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Bioch 110:59–69

    Article  CAS  Google Scholar 

  • Vittori Antisari L, Carbone S, Gatti A, Ferrando S, Nacucchi M, Pascalis FD, Gambardella C, Badalucco L, Laudicina VA (2016) Effect of cobalt and silver nanoparticles and ions on Lumbricus rubellus health and on microbial community of earthworm faeces and soil. Appl Soil Ecol 108:62–71

    Article  Google Scholar 

  • Wang YP, Shi JY, Lin Q, Chen XC (2007) Heavy metal availability and impact on activity of soil microorganisms along a Cu/Zn contamination gradient. J Environ Sci 19:848–853

    Article  CAS  Google Scholar 

  • Wasay SA, Barrington S, Tokunaga S (2001) Organic acids for the in situ remediation of soils polluted by heavy metals: soil flushing in columns. Water Air Soil Pollut 127:301–314

    Article  CAS  Google Scholar 

  • Yang H, Turner S, Rose NL (2016) Mercury pollution in the lake sediments and catchment soils of anthropogenically-disturbed sites across England. Environ Pollut 219:1092–1101

    Article  CAS  Google Scholar 

  • Yang W, Zhang T, Lin S, Ni W (2017) Distance-dependent varieties of microbial community structure and metabolic functions in the rhizosphere of Sedum alfredii Hance during phytoextraction of a cadmium-contaminated soil. Environ Sci Pollut R 24:14234–14248

    Article  CAS  Google Scholar 

  • Zhang P, Ryan JA (1999) Formation of chloropyromorphite from Galena (PbS) in the presence of hydroxyapatite. Environ Sci Technol 33:618–624

    Article  CAS  Google Scholar 

  • Zhang Z, Solaiman ZM, Meney K, Murphy DV, Rengel Z (2013) Biochars immobilize soil cadmium, but do not improve growth of emergent wetland species Juncus subsecundus in cadmium-contaminated soil. J Soils Sediments 13:140–151

    Article  Google Scholar 

  • Zhao XL, Saigusa M (2007) Fractionation and solubility of cadmium in paddy soils amended with porous hydrated calcium silicate. J Environ Sci 19:343–347

    Article  CAS  Google Scholar 

  • Zhao B, Xu R, Ma F, Li Y, Wang L (2016) Effects of biochars derived from chicken manure and rape straw on speciation and phytoavailability of cd to maize in artificially contaminated loess soil. J Environ Manag 184:569–574

    Article  CAS  Google Scholar 

  • Zheng N, Wang Q, Zheng D (2007) Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables. Sci Total Environ 383:81–89

    Article  CAS  Google Scholar 

  • Zhu W, Du W, Shen X, Zhang H, Ding Y (2017) Comparative adsorption of Pb2+ and Cd2+ by cow manure and its vermicompost. Environ Pollut 227:89–97

    Article  CAS  Google Scholar 

  • Zhuang P, McBride MB, Xia H, Li N, Li Z (2009) Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ 407:1551–1561

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the Beijing Key Laboratory Construction Project, Beijing Municipal Education Commission Joint Construction Program (20160939023). We are also grateful to Beijing Academy of Agriculture and Forestry Sciences and Research Center of Eco-environmental Sciences, Chinese Academy of Sciences for providing facilities for the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Huang.

Additional information

Responsible editor: Xilong Wang

Electronic supplementary material

ESM 1

(DOCX 168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Huang, Q., Su, Y. et al. Cobalt accumulation and antioxidant system in pakchois under chemical immobilization in fluvo-aquic soil. J Soils Sediments 18, 669–679 (2018). https://doi.org/10.1007/s11368-017-1804-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-017-1804-3

Keywords

Navigation