Journal of Soils and Sediments

, Volume 18, Issue 6, pp 2188–2202 | Cite as

Eco-restoration of a mine technosol according to biochar particle size and dose application: study of soil physico-chemical properties and phytostabilization capacities of Salix viminalis

  • Manhattan Lebrun
  • Florie Miard
  • Romain Nandillon
  • Nour Hattab-Hambli
  • Gabriella S. Scippa
  • Sylvain BourgerieEmail author
  • Domenico Morabito
Reclamation and Management of Polluted Soils: Options and Case Studies



Anthropic activities induce severe metal(loid)s contamination of many sites, which is a threat to the environment and to public health. Indeed metal(loid)s cannot be degraded, and thus accumulate in soils. Furthermore, they can contaminate surrounding ecosystems through run-off or wind erosion. This study aims to evaluate the phytostabilization capacity of Salix viminalis to remediate As and Pb highly contaminated mine site, in a biochar-assisted phytoremediation context and to assess biochar particle size and dose application effects.

Materials and methods

To achieve this, mesocosm experiments were conducted using the contaminated technosol and four different size fraction of one biochar as amendment, at two application rates (2 and 5%). Non-rooted cuttings of Salix viminalis were planted in the different mixtures. In order to characterize the mixtures, soil pore waters were sampled at the beginning and at the end of the experiment and analyzed for pH, electrical conductivity, and metal(loid) concentrations. After 46 days of Salix growth, roots, stems, and leaves were harvested and weighed, and As and Pb concentrations and distributions were measured.

Results and discussion

Soil fertility improved (acidity decrease, electrical conductivity increase) following biochar addition, whatever the particle size, and the Pb concentration in soil pore water decreased. Salix viminalis did not grow on the non-amended contaminated soil while the biochar amendment permitted its growth, with a better growth with the finest biochars. The metal(loid)s accumulated preferentially in roots.


Fine biochar particles allowed S. viminalis growth on the contaminated soil, allowing this species to be used for technosol phytostabilization.


Amendment Biochar Metal(loid)s Particle size Phytostabilisation Salix viminalis 



The authors are grateful to JC Léger (La Carbonerie, Crissey, France) for sourcing biochars, and F. Cottard (BRGM, France). The authors wish to thank Sullivan Renouard and Jean-Philippe Blondeau for their technical support.

Supplementary material

11368_2017_1763_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 20 kb)


  1. Agegnehu G, Bass AM, Nelson PN, Muirhead B, Wright G, Bird MI (2015) Biochar and biochar-compost as soil amendments: effect on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agric Ecosyst Environ 213:72–85CrossRefGoogle Scholar
  2. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881CrossRefGoogle Scholar
  3. Anawar HM, Akter F, Solaiman ZM, Stretov V (2015) Biochar: an emerging panacea for remediation of soil contaminants from mining, industry and sewage wastes. Pedosphere 25(5):654–665CrossRefGoogle Scholar
  4. Bart S, Motelica-Heino M, Miard F, Joussein E, Soubrand M, Bourgerie S, Morabito D (2016) Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols. Catena 136:44–52CrossRefGoogle Scholar
  5. Beesley L, Marmiroli M (2011) The immobilization and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159:474–480CrossRefGoogle Scholar
  6. Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282CrossRefGoogle Scholar
  7. Beesley L, Inneh O, Norton G, Moreno-Jimenez E, Pardo T, Clemente R, Dawson J (2014) Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ Pollut 186:195–202CrossRefGoogle Scholar
  8. Bian R, Joseph S, Cui L, Pan G, Li L, Liu X, Zhang A, Rutlidge H, Wang S, Chia C, Marjo C, Gig B, Munroe P, Donne S (2014) A three year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J Hazard Mater 272:121–128CrossRefGoogle Scholar
  9. Borišev M, Pajević S, Nikolić N, Pilipović A, Kristić B, Orlović S (2009) Phytoextraction of Cd, Ni and Pb using 4 willow clones (Salix spp.) Polish J of Environ Stud 18(4):553–561Google Scholar
  10. Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol 69(6):3593–3599CrossRefGoogle Scholar
  11. Cattani I, Fragoulis G, Boccelli R, Capri E (2006) Copper bioavailability in the rhizosphere of maize (Zea mays L.) grown in two Italian soils. Chemosphere 64(11):1972–1979CrossRefGoogle Scholar
  12. Chintala R, Mollinedo J, Schumacher TE, Malo DD, Julson JL (2013) Effect of biochar on chemical properties of acidic soil. Arch Agron Soil Sci 60(3):393–404CrossRefGoogle Scholar
  13. Cottard F (2010) Résultats des caractérisations complémentaires effectuées sur différents milieu dans le district minier de Pontgibaud (63). BRGM/RP-58571-FRGoogle Scholar
  14. Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11:163–167CrossRefGoogle Scholar
  15. Evlard A, Sergeant K, Printz B, Guignard C, Renault J, Campanello B, Paul R, Hausman JF (2014) A multiple-level study of metal tolerance in Salix fragilis and Salix aurita clones. J Proteome 101:113–129CrossRefGoogle Scholar
  16. Fellet G, Marchiol L, Delle Vedove G, Peressotti A (2011) Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere 83(9):1262–1267CrossRefGoogle Scholar
  17. Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s products. As J Energy Env 6(4):214–231Google Scholar
  18. Gul S, Whalan JK, Thomas BW, Sachdeva V, Deng H (2015) Physico-chemical properties and microbial response in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ 206:46–59CrossRefGoogle Scholar
  19. Hossain MK, Stretov V, Chan KY, Nelson PK (2010) Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78:1167–1171CrossRefGoogle Scholar
  20. Houben D, Evrard L, Sonnet P (2013) Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.) Biomass Bioenergy 57:196–204CrossRefGoogle Scholar
  21. Houman F, Godbold DL, Shasheng W, Hüttenmann A (1990) Gas exchange in Populus maximowiczii in relation to potassium and phosphorous nutrition. J Plant Physiol 135:675–679CrossRefGoogle Scholar
  22. Jaafar NM, Clode PL, Abbott LK (2015) Soil microbial responses to biochars varying in particle size, surface and pore properties. Pedosphere 25(5):770–780CrossRefGoogle Scholar
  23. Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, van Zwieten L, Kimber S, Cowie A, Singh BP, Lehmann J, Foidl N, Smernik RJ, Amonette JE (2010) An investigation into the reactions of biochar in soil. Aust J Soil Res 48:501–515CrossRefGoogle Scholar
  24. Karami N, Clemente R, Moreno-Jiménez E, Lepp NW, Beesley L (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191:41–48CrossRefGoogle Scholar
  25. Kidd P, Barceló J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C (2009) Trace element behavior at the root-soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259CrossRefGoogle Scholar
  26. Laghari M, Mirjat MS, Hu Z, Fazal S, Xiao B, Hu M, Chen Z, Guo D (2015) Effects if biochar application rate on sandy desert soil properties and sorghum growth. Catena 135:313–320CrossRefGoogle Scholar
  27. Lebrun M, Macri C, Miard F, Hattab-Hambli N, Motelica-Heino M, Morabito D, Bourgerie S (2016) Effect of biochar amendments on As and Pb mobility and phytoavailability in contaminated mine technosols phytoremediated by Salix. J Geochem Explor. doi: 10.1016/j.gexplo.2016.11.016
  28. Liang C, Gascó G, Fu S, Méndez A, Paz-Ferreiro J (2016) Biochar from pruning residues as a soil amendment: effects of pyrolysis temperature and particle size. Soil Till Res 164:3–10CrossRefGoogle Scholar
  29. Liu Z, Dugan B, Masiello C, Barnes R, Gallagher M, Gonnermann H (2016) Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar–sand mixtures. J Hydrol 533:461–472CrossRefGoogle Scholar
  30. Mleczek M, Łukaszewski M, Kaczmarek Z, Rissmann I, Golinski P (2009) Efficiency of selected heavy metals accumulation by Salix viminalis roots. Environ Bot 65:48–53CrossRefGoogle Scholar
  31. Molnàr M, Vaszita E, Farkas E, Vjaczki E, Fekete-Kertész I, Tolner M, Klebercz O, Kirchkeszner C, Gruiz K, Uzinger N, Feigl V (2016) Acidic sandy soil improvement with biochar – a microcosm study. Sci Total Environ 563-564:855–865CrossRefGoogle Scholar
  32. Mukherjee A, Zimmerman AR, Hamdan R, Cooper WT (2014) Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging. Solid Earth 5:693–704CrossRefGoogle Scholar
  33. Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyperaccumulation metals in plants. Water Air Soil Pollut 184:105–126CrossRefGoogle Scholar
  34. Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540CrossRefGoogle Scholar
  35. Development Core Team R (2009) R: a language and environment for statistical computing. R foundation for statistical Computing, VienneGoogle Scholar
  36. Rees F (2014) Mobilité des métaux dans les systems sol-plante-biochar. University of Lorraine, DissertationGoogle Scholar
  37. Sigua G, Novak J, Watts D, Cantrell K, Shumaker P, Szögi A, Johnson M (2014) Carbon mineralization in two ultisols amended with different sources and particle sizes of pyrolyzed biochar. Chemosphere 103:313–321CrossRefGoogle Scholar
  38. Sorrenti G, Masiello CA, Toselli M (2016) Biochar interferes with kiwifruit Fe-nutrition in calcareous soil. Geoderma 272:10–19CrossRefGoogle Scholar
  39. Tang Y, Deng T, Wu Q, Wang S, Qiu R, Wei Z, Guo X, Wu Q, Lei M, Chen T, Echevarria G, Sterckemen T, Simmonot M, Morel J (2012) Designing cropping system for metal-contaminated sites: a review. Pedosphere 22(4):470–488CrossRefGoogle Scholar
  40. Tlustoš P, Szàkovà J, Vyslovžilovà M, Pavlíkovà D, Weger J, Javorskà H (2007) Variation in the uptake of arsenic, cadmium, lead and zinc by different species of willows Salix spp. grown in contaminated soils. Central European Journal of Biology 2(2):254–275Google Scholar
  41. Uchimiya M, Lima IM, Klasso T, Wartelle LH (2010) Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80:935–940CrossRefGoogle Scholar
  42. Vamerali T, Bandiera M, Coletto L, Zanetti F, Dickinson NM, Mosca G (2009) Phytoremediation trails on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy). Environ Pollut 157:887–894CrossRefGoogle Scholar
  43. Vandecasteele B, Meers E, Vervaeke P, De Vos B, Quataert P, Tack FMG (2005) Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere 58:995–1002CrossRefGoogle Scholar
  44. Wang Y, Pan F, Wang G, Zhang G, Wang Y, Chen X, Mao Z (2014) Effects of biochar on photosynthesis and antioxydative system of Malus hupehensis Rehd. Seedlings under replant conditions. Sci Hortic 175:9–15CrossRefGoogle Scholar
  45. Zhang W, Niu J, Morales VL, Chen X, Hay GH, Lehmann J, Steenhuis TS (2010) Transport and retention of biochar particles in porous media: effect of pH, ionic strength and particle size. Ecohydrology 3:497–508CrossRefGoogle Scholar
  46. Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan N, Pei J, Huang H (2013) Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ Sci Pollut Res 20(12):8472–8483CrossRefGoogle Scholar
  47. Zhang J, Chen Q, You C (2016) Biochar effect on water evaporation and hydraulic conductivity in sandy soil. Pedosphere 26(2):265–272CrossRefGoogle Scholar
  48. Zheng R, Chen Z, Cai C, Wang X, Huang Y, Xiao B, Sun G (2013) Effect of biochars from rice husk, bran, and straw on heavy metal uptake by pot-grown wheat seedling in a historically contaminated soil. Bioresources 8(4):5964–5982CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Manhattan Lebrun
    • 1
    • 2
  • Florie Miard
    • 1
  • Romain Nandillon
    • 1
    • 3
    • 4
    • 5
  • Nour Hattab-Hambli
    • 1
  • Gabriella S. Scippa
    • 2
  • Sylvain Bourgerie
    • 1
    Email author
  • Domenico Morabito
    • 1
  1. 1.INRA USC1328, LBLGC EA1207, rue de ChartresUniversity of OrleansOrléans Cedex 2France
  2. 2.Dipartimento di Bioscienze e TerritorioUniversità degli Studi del MolisePescheItaly
  3. 3.French Geological Survey (BRGM)Orléans, Cedex 2France
  4. 4.IDDEA, Environmental consulting engineeringOlivetFrance
  5. 5.ISTO, UMR 7327, CNRS/Orleans UniversityOrléans, Cedex 2France

Personalised recommendations