Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Trace elements bioavailability to Triticum aestivum and Dendrobaena veneta in a multielement-contaminated agricultural soil amended with drinking water treatment residues

  • 307 Accesses

  • 2 Citations



The in situ stabilization of multielement-contaminated agricultural soils has limited effectiveness when using common single amendments. This study examined the use of drinking water treatment residues (WTR), based on (hydr)oxides of Fe, Al, or Mn, as a cost-effective solution to optimize the immobilization of metals (Cd, Pb, Zn) and As.

Materials and methods

Trace elements (TE) bioavailability was assessed under semi-controlled conditions in a pot study cultivating winter wheat (Triticum aestivum L. cv. Tiger) until maturity. An Fe-based WTR and a Mn-based WTR, applied at rates of 0.5 and 1% (m/m), were related to effects of lime marl (LM) application. Additionally, a bioassay with earthworms (Dendrobaena veneta) was conducted. Both bioassays were compared with measurements of NH4NO3-soluble, diffusive gradients in thin film (DGT)-available and soil solution TE concentrations, representing well-established surrogates for mimicking the bioavailable element fractions in soil.

Results and discussion

The application of the Fe-based WTR reduced As accumulation in vegetative wheat tissues (by up to 75%) and earthworms (by up to 41%), which corresponded with the findings from soil chemical analyses and improved plant growth and earthworm body weight. However, As concentrations in cereal grains were not affected, Cd or Pb accumulation by wheat was not mitigated, and Zn uptake was enhanced. By contrast, the Mn-based WTR effected the greatest reduction in Pb uptake, and lowered Cd transfer to wheat grain (by up to 25%). Neither the NH4NO3-soluble nor DGT-available concentrations matched with Cd and Zn accumulation in plants or earthworms, indicating interferences due to competition for binding sites according to the biotic ligand model.


The results obtained in this study suggest that a bioassay with key species prior to field application should be mandatory when designing in situ stabilization options. The application of WTR to an agricultural soil strongly affected TE bioavailability to plants and earthworms. Low application rates tended to improve biomass production of biota. Higher application rates involved risks (e.g., P fixation, TE inputs), and none of the amendments tested could immobilize all targeted elements.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Bade R, Oh S, Shin WS (2012) Diffusive gradients in thin films (DGT) for the prediction of bioavailability of heavy metals in contaminated soils to earthworm (Eisenia foetida) and oral bioavailable concentrations. Sci Total Environ 416:127–136

  2. Barth N, Forberg H (2015) Boden-Dauerbeobachtungsprogramm des LfULG Sachsen - Standortcharakteristika. Accessed 24 Aug 2016

  3. Basta NT, Ryan JA, Chaney RL (2005) Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. J Environ Qual 34:49–63

  4. BBodSchV (1999) Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) vom 12. Juli 1999. Bundesgesetzblatt, Bundesanzeigerverlagsgesellschaft mbH, Köln

  5. BfUL (2015) Hinweise und Empfehlungen zum Umgang mit arsen- und schwermetallbelasteten landwirtschaftlich und gärtnerisch genutzten Böden (in German). Staatliche Betriebsgesellschaft für Umwelt und Landwirtschaft (BfUL). Accessed 24 Aug 2016

  6. BMEL (2014) Handbuch Forstliche Analytik. Gutachterausschuss Forstliche Analytik. Accessed 24 Aug 2016

  7. Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? J Hazard Mater 266:141–166

  8. Brackhage C, Huang J-H, Schaller J, Elzinga EJ, Dudel EG (2014) Readily available phosphorous and nitrogen counteract for arsenic uptake and distribution in wheat (Triticum aestivum L.). Sci Rep 4:4944

  9. Chen C, Huang D, Liu J (2009) Functions and toxicity of nickel in plants: recent advances and future prospects. CLEAN - Soil, air, Water 37:304–313

  10. Cundy A, Bardos P, Puschenreiter M, Witters N, Mench M, Bert V, Friesl-Hanl W, Müller I, Weyens N, Vangronsveld J (2015) Developing effective decision support for the application of “gentle” remediation options: the GREENLAND Project. Remediat J 25:101–114

  11. Degryse F, Smolders E, Zhang H, Davison W (2009) Predicting availability of mineral elements to plants with the DGT technique: a review of experimental data and interpretation by modelling. Environ Chem 6:198–218

  12. DIN EN 13805:2014–12 (2014) Lebensmittel - Bestimmung von Elementspuren - Druckaufschluss; Deutsche Fassung EN 13805:2014. Deutsches Institut für Normung Hrsg, Berlin

  13. DIN ISO (1997) 11466:1997 Bodenbeschaffenheit - Extraktion in Königswasser löslicher Spurenelemente. Deutsches Institut für Normung Hrsg, Berlin

  14. DIN ISO (2005) 10390:2005 Bodenbeschaffenheit - Bestimmung des pH-Wertes. Deutsches Insitut für Normung Hrsg, Berlin

  15. DIN ISO (2008) 19730:2008 Bodenbeschaffenheit - Extraktion von Spurenelementen aus Böden mit Ammoniumnitratlösung. Deutsches Institut für Normung Hrsg, Berlin

  16. Fitz WJ, Wenzel WW, Zhang H, Nurmi J, Štipek K, Fischerova Z, Schweiger P, Köllensperger G, Ma LQ, Stingeder G (2003) Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency. Environ Sci Technol 37:5008–5014

  17. Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu rev Plant Biol 64:511–566

  18. Green CE, Chaney RL, Bouwkamp J (2003) Interactions between Cadmium uptake and phytotoxic levels of zinc in hard red spring wheat. J Plant Nutr 26:417–430

  19. Gryschko R, Kuhnle R, Terytze K, Breuer J, Stahr K (2005) Soil extraction of readily soluble heavy metals and As with 1 M NH4NO3 -solution. Evaluation of DIN 19730. J Soils Sediments 5:101–106

  20. Harper MP, Davison W, Tych W (2000) DIFS—a modelling and simulation tool for DGT induced trace metal remobilisation in sediments and soils. Environ Model Softw 15:55–66

  21. Huynh TT, Zhang H, Laidlaw WS, Singh B, Baker AJM (2010) Plant-induced changes in the bioavailability of heavy metals in soil and biosolids assessed by DGT measurements. J Soils Sediments 10:1131–1141

  22. Ippolito JA, Barbarick KA, Elliott HA (2011) Drinking water treatment residuals: a review of recent uses. J Environ Qual 40:1–12

  23. Jamali MK, Kazi TG, Arain MB, Afridi HI, Jalbani N, Kandhro GA, Shah AQ, Baig JA (2009) Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge. J Hazard Mater 164:1386–1391

  24. Kardel K, Müller I, Kaufmann-Boll C, Kastler M (2015) Hintergrundwerte für sächsische Böden - Angaben für Stoffgehalte, differenziert nach Substrat, Nutzung und Horizont; Teil 1: Gesamtgehalte (Königswasserextrakt). Accessed 24 Aug 2016

  25. Kidd P, Mench M, Álvarez-lópez V, Bert V, Dimitriou I, Friesl-hanl W, Herzig R, Janssen JO, Kolbas A, Müller I, Neu S, Renella G, Ruttens A, Vangronsveld J, Puschenreiter M (2015) Agronomic practices for improving gentle remediation of trace element-contaminated soils. Int J Phytoremediation 17:1005–1037

  26. Kumpiene J (2010) Trace element immobilization in soil using amendments. In: Hooda PS (ed) Trace elements in soils. Wiley, Chichester, pp 353–379

  27. Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manag 28:215–225

  28. Maleri RA, Reinecke AJ, Reinecke SA (2007) A comparison of nickel toxicity to pre-exposed earthworms (Eisenia fetida, oligochaeta) in two different test substrates. Soil Biol Biochem 39:2849–2853

  29. Marschner B, Müller I, Haag R, Stolz R, Stempelmann I (2008) Maßnahmen zur Gefahrenabwehr bei großflächigen schädlichen Bodenveränderungen (SBV) insbesondere unter gärtnerischer Nutzung. Abschlussbericht des Forschungsvorhabens Az: IV - 6 - 1.7-29 im Auftrag des MUNLV. 132 S

  30. Mench M, Vangronsveld J, Clijsters H, Lepp N, Edwards R (1999) In situ metal immobilization and phytostabilization of contaminated soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 323–358

  31. Mench M, Vangronsveld J, Lepp N, Ruttens A, Geebelen W (2006) Phytoremediation of metal-contaminated sites. In: Morel J-L, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils, NATO Scien, pp 109

  32. Moore TJ, Rightmire CM, Vempati RK (2000) Ferrous iron treatment of soils contaminated with arsenic-containing wood-preserving solution. J Soil Contam 9:375–405

  33. Muhammad I, Puschenreiter M, Wenzel WW (2012) Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants. Sci Total Environ 416:490–500

  34. Müller I (2000) Effect of amendments containing iron oxides on mobility of heavy metals in contaminated soils (in German). PhD-thesis; Boden und Landschaft, Schriftenreihe zur Bodenkunde, Landeskultur und Landschaftsökologie, Justus-Liebig-Universität Gießen, Band 27

  35. Müller I, Pluquet E (2000) Zum Einsatz von Fe-haltigen Reststoffen als Bodenzusatz zur Sicherung schwermetallbelasteter Standorte im Harzvorland. In: Wippermann T (ed) Bergbau und Umwelt: Langfristige geochemische Einflüsse. Springer, Berlin, pp 199–207

  36. Nahmani J, Hodson ME, Black S (2007) A review of studies performed to assess metal uptake by earthworms. Environ Pollut 145:402–424

  37. Nielsen SS, Petersen LR, Kjeldsen P, Jakobsen R (2011) Amendment of arsenic and chromium polluted soil from wood preservation by iron residues from water treatment. Chemosphere 84:383–389

  38. Nowack B, Schulin R, Robinson BH (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40:5225–5232

  39. Onwubuya K, Cundy A, Puschenreiter M, Kumpiene J, Bone B, Greaves J, Teasdale P, Mench M, Tlustos P, Mikhalovsky S, Waite S, Friesl-Hanl W, Marschner B, Müller I (2009) Developing decision support tools for the selection of “gentle” remediation approaches. Sci Total Environ 407:6132–6142

  40. Oste LA, Dolfing J, Ma W, Lexmond TM (2001) Cadmium uptake by earthworms as related to the availability in the soil and the intestine. Environ Toxicol Chem 20:1785–1791

  41. Peijnenburg WJ, Baerselman R, de Groot AC, Jager T, Posthuma L, Van Veen RP (1999) Relating environmental availability to bioavailability: soil-type-dependent metal accumulation in the oligochaete Eisenia andrei. Ecotoxicol Environ Saf 44:294–310

  42. Pigna M, Cozzolino V, Violante A, Meharg AA (2009) Influence of phosphate on the arsenic uptake by wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations. Water Air Soil Pollut 197:371–380

  43. Pigna M, Cozzolino V, Caporale AG, Mora ML, Di Meo V, Jara AA, Violante A (2010) Effects of phosphorus fertilization on arsenic uptake by wheat grown in polluted soils. J Soil Sci Plant Nutr 10:428–442

  44. Puschenreiter M, Wittstock F, Friesl-Hanl W, Wenzel WW (2013) Predictability of the Zn and Cd phytoextraction efficiency of a Salix smithiana clone by DGT and conventional bioavailability assays. Plant Soil 369:531–541

  45. Qiu H, Vijver MG, Peijnenburg WJGM (2011) Interactions of cadmium and zinc impact their toxicity to the earthworm Aporrectodea caliginosa. Environ Toxicol Chem 30:2084–2093

  46. Rizwan M, Meunier JD, Miche H, Keller C (2012) Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J Hazard Mater 209-210:326–334

  47. Sarkar D, Quazi S, Makris KC, Datta R, Khairom A (2007) Arsenic bioaccessibility in a soil amended with drinking-water treatment residuals in the presence of phosphorus fertilizer. Arch Environ Contam Toxicol 53:329–336

  48. Senila M (2014) Real and simulated bioavailability of lead in contaminated and uncontaminated soils. J Environ Heal Sci Eng 12:1–8

  49. Senila M, Levei EA, Senila LR (2012) Assessment of metals bioavailability to vegetables under field conditions using DGT, single extractions and multivariate statistics. Chem Cent J 6:119

  50. Siebielec G (2010) Evaluating effectiveness of remediation methods for metal contaminated soils based on response of various components of soil environment. Final report of MNiSZW project 2P04G06130, pp 68

  51. Siebielec G, Kidd P, Pecio M, Galazka R, Mench M, Basta N, Chaney RL, Álvarez-López V, Rodríguez-Garrido B, Vangronsveld J, Friesl-Hanl W, Cundy A, Puschenreiter M (2013) Testing single and combinations of amendments for stabilization of metals in contrasting extremely contaminated soils. E3S Web Conf 1:01003. doi:10.1051/e3sconf/20130101003

  52. Siedlecka A (1995) Some aspects of interactions between heavy metals and plant mineral nutrients. Acta Soc Bot Pol 64:265–272

  53. SMI (2013) Landesentwicklungsplan 2013. Sächsisches Staatsministerium des Innern. Accessed 24 Aug 2016

  54. Spurgeon DJ (2010) Trace metal exposure and effects on soil-dwelling species and their communities. In: Hooda PS (ed) Trace elements in soils. Wiley, Chichester, pp 155–174

  55. Tiberg C, Kumpiene J, Gustafsson JP, Marsz A, Persson I, Mench M, Kleja DB (2016) Immobilization of Cu and As in two contaminated soils with zero-valent iron—long-term performance and mechanisms. Appl Geochem 67:144–152

  56. Van Nevel L, Mertens J, Oorts K, Verheyen K (2007) Phytoextraction of metals from soils: how far from practice? Environ Pollut 150:34–40

  57. Zhang H, Zhao FJ, Sun B, Davison W, Mcgrath SP (2001) A new method to measure effective soil solution concentration predicts copper availability to plants. Environ Sci Technol 35:2602–2607

  58. Zhao F, Mcgrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

Download references


The authors gratefully thank Prof. B. Marschner for providing the drinking water treatment residue WTRA and A. Weiske for ICP-measurements. This work was financially supported by the European Commission under the Seventh Framework Programme for Research (FP7-KBBE-266124, Greenland).

Author information

Correspondence to Silke Neu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Maria Manuela Abreu

Electronic supplementary material


(DOCX 26.0 kb)


(DOCX 83.9 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neu, S., Müller, I., Brackhage, C. et al. Trace elements bioavailability to Triticum aestivum and Dendrobaena veneta in a multielement-contaminated agricultural soil amended with drinking water treatment residues. J Soils Sediments 18, 2259–2270 (2018).

Download citation


  • Bioassay
  • Fe oxide
  • In situ stabilization
  • Lime marl
  • Mn oxide