Skip to main content

Advertisement

Log in

Patterns and drivers of fungal diversity along an altitudinal gradient on Mount Gongga, China

  • Soils, Sec 5 • Soil and Landscape Ecology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Fungi are essential components of soil microbial communities and have a crucial role in biogeochemical processes. Alpine regions are sensitive to climate change, and the importance of changes in fungal community composition along altitudinal gradients in alpine regions is hotly debated.

Materials and methods

We used 454 pyrosequencing approaches to investigate the fungal communities at 1600, 2300, 2800, 3000, and 3900 m above sea level along an altitudinal gradient on Mount Gongga.

Results and discussion

The results showed that Agaricomycetes, Sordariomycetes, and Tremellomycetes are the dominant classes at all sampling sites. Operational taxonomic unit richness decreased with increasing altitude, and the fungal communities were clustered into three groups that corresponded to altitudes of, i.e., 1600, 2300, and above 2800 m. The evenness of fungi was not significantly correlated with altitude, whereas beta diversities were significantly correlated with altitude. The distance-based redundancy analysis and Mantel test indicated that the composition of fungal assemblages was mostly driven by altitude and temperature.

Conclusions

Our results indicated that ecological processes possibly related to altitude and temperature play an important role in structuring fungal biodiversity along the elevational gradient. Our results highlight that different microbes may respond differently to environmental gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bahram M, Polme S, Kõljalg U, Zarre S, Tedersoo L (2012) Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol 193:465–473

    Article  Google Scholar 

  • Bahram M, Kõljalg U, Courty PE, Diédhiou AG, Kjøller R, Põlme S, Ryberg M, Veldre V, Tedersoo L (2013) The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales. J Ecol 101:1335–1344

    Article  Google Scholar 

  • Beauregard MS, Hamel C, Atul N, St-Arnaud M (2010) Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in alfalfa. Microb Ecol 59:379–389

    Article  CAS  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil-nitrogen—a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL (2008) Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. P Natl Acad Sci USA 105:11505–11511

    Article  CAS  Google Scholar 

  • Buee M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  CAS  Google Scholar 

  • Caporaso JG et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  Google Scholar 

  • Carter MR, Gregorich EG (2007) Soil sampling and methods of analysis, Second edn. CRC Press Boca Raton, USA

    Google Scholar 

  • Cheng G, Luo J (2004) Succession features and dynamic simulation of subalpine forest in the Gongga Mountain, China. J Mt Sci 1:29–37

    Article  Google Scholar 

  • Chu H, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 12:2998–3006

    Article  CAS  Google Scholar 

  • Clemmensen KE, Michelsen A, Jonasson S, Shaver GR (2006) Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems. New Phytol 171:391–404

    Article  Google Scholar 

  • Coince A, Cordier T, Lengellé J, Defossez E, Vacher C, Robin C, Buée M, Marçais B (2014) Leaf and root-associated fungal assemblages do not follow similar elevational diversity patterns. PLoS One 9:e100668

    Article  Google Scholar 

  • Cox F, Barsoum N, Lilleskov EA, Bidartondo MI (2010) Nitrogen availability is a primary determinant of conifer Mycorrhizas across complex environmental gradients. Ecol Lett 13:1103–1113

    Article  Google Scholar 

  • Dirnbock T, Essl F, Rabitsch W (2011) Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob Chang Biol 17:990–996

    Article  Google Scholar 

  • Ferrier S, Manion G, Elith J, Richardson K (2007) Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers Distrib 13:252–264

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. P Natl Acad Sci USA 103:626–631

    Article  CAS  Google Scholar 

  • Fierer N, Morse JL, Berthrong ST, Bernhardt ES, Jackson RB (2007) Environmental controls on the landscape-scale biogeography of stream bacterial communities. Ecology 88:2162–2173

    Article  Google Scholar 

  • Freeman KR, Martin AP, Karki D, Lynch RC, Mitter MS, Meyer AF, Longcore JE, Simmons DR, Schmidt SK (2009) Evidence that chytrids dominate fungal communities in high-elevation soils. P Natl Acad Sci USA 106:18315–18320

    Article  CAS  Google Scholar 

  • Fukami T, Dickie IA, Wilkie JP, Paulus BC, Park D, Roberts A, Buchanan PK, Allen RB (2010) Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol Lett 13:675–684

    Article  Google Scholar 

  • Gao C et al (2015) Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession. New Phytol 205:771–785

    Article  Google Scholar 

  • Green JL, Bohannan BJ, Whitaker RJ (2008) Microbial biogeography: from taxonomy to traits. Science 320:1039–1043

    Article  CAS  Google Scholar 

  • Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS (2011) The bacterial biogeography of British soils. Environ Microbiol 13:1642–1654

    Article  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913

    Article  CAS  Google Scholar 

  • Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol 174:430–440

    Article  CAS  Google Scholar 

  • Jarvis SG, Woodward S, Taylor AFS (2015) Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300 m) elevation gradient. New Phytol 206:1145–1155

    Article  CAS  Google Scholar 

  • Klein JA, Harte J, Zhao XQ (2004) Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan plateau. Ecol Lett 7:1170–1179

    Article  Google Scholar 

  • Luo TX, Li WH, Zhu HZ (2002) Estimated biomass and productivity of natural vegetation on the Tibetan plateau. Ecol Appl 12:980–997

    Article  Google Scholar 

  • Martiny JBH et al (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112

    Article  CAS  Google Scholar 

  • Matsuoka S, Mori AS, Kawaguchi E, Hobara S, Osono T (2016) Disentangling the relative importance of host tree community, abiotic environment and spatial factors on ectomycorrhizal fungal assemblages along an elevation gradient. FEMS Microbiol Ecol 92(5):fiw044

    Article  Google Scholar 

  • Meier CL, Rapp J, Bowers RM, Silman M, Fierer N (2010) Fungal growth on a common wood substrate across a tropical elevation gradient: temperature sensitivity, community composition, and potential for above-ground decomposition. Soil Biol Biochem 42:1083–1090

    Article  CAS  Google Scholar 

  • Meng H, Li K, Nie M, Wan JR, Quan ZX, Fang CM, Chen JK, Gu JD, Li B (2013) Responses of bacterial and fungal communities to an elevation gradient in a subtropical montane forest of China. Appl Microbiol Biot 97:2219–2230

    Article  CAS  Google Scholar 

  • Mori AS, Shiono T, Koide D, Kitagawa R, Ota AT, Mizumachi E (2013) Community assembly processes shape an altitudinal gradient of forest biodiversity. Glob Ecol Biogeogr 22:878–888

    Article  Google Scholar 

  • Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. J Biogeogr 26:867–878

    Article  Google Scholar 

  • Ohlemüller R, Anderson BJ, Araújo MB, Butchart SHM, Kudrna O, Ridgely RS, Thomas CD (2008) The coincidence of climatic and species rarity: high risk to small-range species from climate change. Biol Lett 4:568–572

    Article  Google Scholar 

  • Oksanen J (2015) Multivariate analysis of ecological communities in R: vegan tutorial. University Oulu, Oulu

    Google Scholar 

  • Peay KG, Baraloto C, Fine PVA (2013) Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J 7:1852–1861

    Article  CAS  Google Scholar 

  • Peay KG, Kennedy PG, Bruns TD (2008) Fungal community ecology: a hybrid beast with a molecular master. Bioscience 58:799–810

  • Pellissier L et al (2014) Soil fungal communities of grasslands are environmentally structured at a regional scale in the alps. Mol Ecol 23:4274–4290

    Article  CAS  Google Scholar 

  • Pickles BJ, Genney DR, Anderson IC, Alexander IJ (2012) Spatial analysis of ectomycorrhizal fungi reveals that root tip communities are structured by competitive interactions. Mol Ecol 21:5110–5123

    Article  Google Scholar 

  • Rominger AJ, Miller TEX, Collins SL (2009) Relative contributions of neutral and niche-based processes to the structure of a desert grassland grasshopper community. Oecologia 161:791–800

    Article  Google Scholar 

  • Rousk J, Brookes PC, Bååth E (2011) Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘park grass’ UK grassland experiment. FEMS Microbiol Ecol 76:89–99

    Article  CAS  Google Scholar 

  • Shen CC, Xiong JB, Zhang HY, Feng YZ, Lin XG, Li XY, Liang WJ, Chu HY (2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol Biochem 57:204–211

    Article  CAS  Google Scholar 

  • Shen C, Ni Y, Liang W, Wang J, Chu H (2015) Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Front Microbiol 6:582

    Google Scholar 

  • Shi Y, Xiang X, Shen C, Chu H, Neufeld JD, Walker VK, Grogan P (2014) Vegetation-associated impacts on Arctic tundra bacterial and micro-eukaryotic communities. Appl Environ Microbiol 81(2):492–501

    Article  Google Scholar 

  • Siciliano SD et al (2014) Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biol Biochem 78:10–20

    Article  CAS  Google Scholar 

  • Siles JA, Margesin R (2016) Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: what are the driving factors? Microb Ecol 72:207–220

    Article  Google Scholar 

  • Singh D, Takahashi K, Adams JM (2012a) Elevational patterns in archaeal diversity on Mt. Fuji PloS One 7:e44494

    Article  CAS  Google Scholar 

  • Singh D, Takahashi K, Kim M, Chun J, Adams JM (2012b) A hump-backed trend in bacterial diversity with elevation on Mount Fuji, Japan. Microb Ecol 63:429–437

    Article  Google Scholar 

  • Sundqvist MK, Sanders NJ, Wardle DA (2013) Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annu Rev Ecol Evol S 44:261–280

    Article  Google Scholar 

  • Treseder KK, Lennon JT (2015) Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol R 79:243–262

    Article  Google Scholar 

  • Verbruggen E, van der Heijden MGA, Weedon JT, Kowalchuk GA, Roling WFM (2012) Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Mol Ecol 21:2341–2353

    Article  Google Scholar 

  • Wang J, Soininen J, He J, Shen J (2012) Phylogenetic clustering increases with elevation for microbes. Env Microbiol Rep 4:217–226

    Article  Google Scholar 

  • Wang J-T, Zheng Y-M, Hu H-W, Zhang L-M, Li J, He J-Z (2015) Soil pH determines the alpha diversity but not beta diversity of soil fungal community along altitude in a typical Tibetan forest ecosystem. J Soils Sediments 15:1224–1232

    Article  CAS  Google Scholar 

  • Wang J et al (2016) Regional and global elevational patterns of microbial species richness and evenness. Ecography 40:393–402

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA (ed) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Whiteway M, Bachewich C (2007) Morphogenesis in Candida albicans. Annu Rev Microbiol 61:529–553

    Article  CAS  Google Scholar 

  • Yuan Y, Si G, Wang J, Luo T, Zhang G (2014) Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan plateau. FEMS Microbiol Ecol 87:121–132

    Article  CAS  Google Scholar 

  • Zachow C et al (2009) Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. ISME J 3:79–92

    Article  CAS  Google Scholar 

  • Zinger L, Boetius A, Ramette A (2014) Bacterial taxa-area and distance-decay relationships in marine environments. Mol Ecol 23:954–964

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by The National Key Research and Development Program of China (No. 2016YFC0501802) and the National Natural Science Foundation of China (Nos. 41401276 and 41101238).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingzhong Liu.

Additional information

Responsible editor: Shiela Chavez

Electronic supplementary material

ESM 1

(DOCX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Wu, B., Chen, H. et al. Patterns and drivers of fungal diversity along an altitudinal gradient on Mount Gongga, China. J Soils Sediments 17, 2856–2865 (2017). https://doi.org/10.1007/s11368-017-1701-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-017-1701-9

Keywords

Navigation