Advertisement

Journal of Soils and Sediments

, Volume 17, Issue 2, pp 543–556 | Cite as

Evaluation of biogeochemical reactivity of fresh and weathered contaminated dredged sediments

  • Julien Couvidat
  • Carmen Mihaela NeculitaEmail author
  • Mostafa Benzaazoua
  • Thomas Genty
  • Vincent Chatain
Sediments, Sec 2 • Physical and Biogeochemical Processes • Research Article

Abstract

Purpose

Metal mobility in contaminated marine sediments is largely controlled by low-soluble sulfides. In dredged sediments exposed to air and water, geochemical and microbial-mediated processes may enhance the weathering and leaching of hazardous contaminants, especially trace metals. The objective of the present study was to thoroughly characterize and assess the biogeochemical reactivity of marine-dredged sediments.

Materials and methods

Two samples of dredged sediments, one stored (to preserve anoxic conditions) and another exposed to the air, were assessed in the perspective of their long-term management. Biogeochemical reactivity was evaluated, especially by a qualitative assessment of aerobic iron- and sulfur-oxidizing bacteria activity.

Results and discussion

Despite the high content of total sulfides (2 to 3.5 wt.% S), the acid-volatile fraction was low (4.3 × 10−3 vs. 9.4 × 10−5 g S kg−1 in raw and weathered sediments, respectively), as an indication of the high degree of crystallinity of sulfide minerals present in samples. The raw sediment was reactive, particularly to aerobic bacteria that decreased the pH from 7.0 to 4.2, for neutrophilic sulfur-oxidizing bacteria, and from 4.5 to 2.5, for acidophilic iron-oxidizing, within only 18 days. Even though only neutrophilic sulfur-oxidizing bacteria seem reactive in the aged sediment, they countered the major buffering effect due to the high amount of carbonates. Important differences in the temporal evolution of pH and Eh of the raw and aged sediments support these results.

Conclusions

Neutrophilic sulfur-oxidizing bacteria showed to be the most reactive in both sediments. Finally, despite the sharp pH decrease over time, acidophilic bacteria activity does not seem to be particularly enhanced.

Keywords

Biogeochemical reactivity Dredged marine sediment Iron-oxidizing bacteria Sulfate-reducing bacteria Sulfur-oxidizing bacteria Sulfur cycle 

Notes

Acknowledgments

The research presented in this paper was supported by the Region Rhône-Alpes with a CMIRA grant, and by the University of Lyon-Saint-Étienne through financial travel support for the Ph.D. applicant. The authors are grateful to the Research and Service Unit in Mineral Technology (Unité de Recherche et de Service en Technologie Minérale (URSTM)), University of Quebec in Abitibi-Temiscamingue (UQAT) for the experimental support. The authors also gratefully acknowledge the assistance of Prof. John W. Molson during the manuscript preparation.

References

  1. AFNOR (1995a) Qualité du sol—dosage du carbone organique et du carbone total après combustion sèche (analyse élémentaire). NF ISO 10694Google Scholar
  2. AFNOR (1995b) Sols: reconnaissance et essais—Identification granulométrique—Méthode de tamisage par voie humide. XP P 94–041Google Scholar
  3. AFNOR (2000) Caractérisation des boues—Détermination de la teneur en matière sèche et de la teneur en eau. NF EN 12880Google Scholar
  4. Akcil A, Erust C, Ozdemiroglu S, Fonti V, Beolchini F (2015) A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. J Clean Prod 86:24–36CrossRefGoogle Scholar
  5. American Public Health Association (APHA) (2005) Standard methods for the examination of water and wastewater. 21st edition, Washington, DCGoogle Scholar
  6. American Society for Testing and Materials (ASTM) (1990) Standard test methods for sulfate-reducing bacteria in water and water-formed deposits. D4412-84:533–535Google Scholar
  7. Arkesteyn GJMW (1980) Pyrite oxidation in acid sulphate soils: the role of microorganisms. Plant Soil 54:119–134CrossRefGoogle Scholar
  8. Association Française de Normalisation (AFNOR) (1986) Essais des eaux—Dosage des ions sulfates—Méthode néphélométrique. NF T90–040Google Scholar
  9. Blais JF, Auclair JC, Tyagi RD (1992) Cooperation between two Thiobacillus strains for heavy-metal removal from municipal sludge. Can J Microbiol 38:181–187CrossRefGoogle Scholar
  10. Blowes DW, Ptacek CJ, Jambor JL, Weisener CG (2003) The geochemistry of acid mine drainage. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry. Pergamon, Oxford, pp. 149–204CrossRefGoogle Scholar
  11. Bouzahzah H, Benzaazoua M, Plante B, Bussiere B (2015) A quantitative approach for the estimation of the “fizz rating” parameter in the acid-base accounting tests: a new adaptations of the Sobek test. J Geochem Explor 153:53–65CrossRefGoogle Scholar
  12. Bouzahzah H, Califice A, Benzaazoua M, Mermillod-Blondin R, Pirard E (2008) Modal analysis of mineral blends using optical image analysis versus X ray diffraction. Proc. Int. Congress Appl. Mineral. ICAM08, AusIMM, Brisbane, AustraliaGoogle Scholar
  13. Brouwer H, Murphy TP (1994) Diffusion method for the determination of acid-volatile sulfides (AVS) in sediment. Environ Toxicol Chem 13:1273–1275CrossRefGoogle Scholar
  14. Burton ED, Bush RT, Sullivan LA (2006) Fractionation and extractability of sulfur, iron and trace elements in sulfidic sediments. Chemosphere 64:1421–1428CrossRefGoogle Scholar
  15. Caille N, Tiffreau C, Leyval C, Morel JL (2003) Solubility of metals in an anoxic sediment during prolonged aeration. Sci Total Environ 301:239–250CrossRefGoogle Scholar
  16. Calmano W, Hong J, Förstner U (1993) Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci Technol 28:223–235Google Scholar
  17. Chatain V, Blanc D, Borschneck D, Delolme C (2013) Determining the experimental leachability of copper, lead, and zinc in a harbor sediment and modeling. Environ Sci Pollut Res 20:66–74CrossRefGoogle Scholar
  18. Chen SY, Lin JG (2001) Bioleaching of heavy metals from sediment: significance of pH. Chemosphere 44:1093–1102CrossRefGoogle Scholar
  19. Couvidat J (2015) Gestion d’un sédiment de dragage marin contaminé: caractérisation de la réactivité biogéochimique, valorisation en mortier et évaluation environnementale. PhD thesis, Institut National des Sciences Appliquées de Lyon, France, 239 ppGoogle Scholar
  20. Couvidat J, Benzaazoua M, Chatain V, Zhang F, Bouzahzah H (2015) An innovative coupling between column leaching and oxygen-consumption tests to assess behavior of contaminated marine dredged sediments. Environ Sci Pollut Res Int 22(14):10943–10955CrossRefGoogle Scholar
  21. Dold B (2014) Evolution of acid mine drainage formation in sulphidic mine tailings. Minerals 4:21–641Google Scholar
  22. Dolla A, Fournier M, Dermoun Z (2006) Oxygen defense in sulfate-reducing bacteria. J Biotechnol 126:87–100CrossRefGoogle Scholar
  23. Elskens M, Leermakers M, Panutrakul S, Monteny F, Baeyens W (1991) Microbial activity in sandy and muddy estuarine sediments. Geo-Marine Let 11:194–198CrossRefGoogle Scholar
  24. Emerson D, Fleming EJ, McBeth JM (2010) Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64:561–583CrossRefGoogle Scholar
  25. European Commission 2000/532/EC: Decision of 3 May 2000 replacing Decision 94/3/EC establishing a list of wastes pursuant to Article 1(a) of Council Directive 75/442/EEC on waste and Council Decision 94/904/EC establishing a list of hazardous waste pursuant to Article 1(4) of Council Directive 91/689/EEC on hazardous waste (notified under document number C(2000) 1147) (Text with EEA relevance)Google Scholar
  26. Fonti V, Dell'Anno A, Beolchini F (2013) Influence of biogeochemical interactions on metal bioleaching performance in contaminated marine sediment. Water Res 47:5139–5152CrossRefGoogle Scholar
  27. Huerta-Diaz MA, Tessier A, Carignan R (1998) Geochemistry of trace metals associated with reduced sulfur in freshwater sediments. Appl Geochem 13:213–233CrossRefGoogle Scholar
  28. Johnson DB (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27:307–317CrossRefGoogle Scholar
  29. Jorgensen BB (1982) Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature 296:643–645CrossRefGoogle Scholar
  30. Jorgensen BB, Nelson DC (2004) Sulfide oxidation in marine sediments: geochemistry meets microbiology. In: Amend JP, Edwards KJ, Lyons TW (eds) Sulfur biogeochemistry: past and present. Geological Society of America, BoulderGoogle Scholar
  31. Leduc D, Leduc LG, Ferroni GD (2002) Quantification of bacterial populations indigenous to acidic drainage streams. Water Air Soil Pollut 135:1–21CrossRefGoogle Scholar
  32. Leonard EN, Cotter AM, Ankley GT (1996) Modified diffusion method for analysis of acid volatile sulfides and simultaneously extracted metals in freshwater sediment. Environ Toxicol Chem 15:1479–1481CrossRefGoogle Scholar
  33. Lions J, Guérin V, Bataillard P, van der Lee J, Laboudigue A (2010) Metal availability in a highly contaminated, dredged-sediment disposal site: field measurements and geochemical modeling. Environ Pollut 158:2857–2864CrossRefGoogle Scholar
  34. Lions J, van der Lee J, Guérin V, Bataillard P, Laboudigue A (2007) Zinc and cadmium mobility in a 5-year-old dredged sediment deposit: experiments and modelling. J Soils Sediments 7:207–215CrossRefGoogle Scholar
  35. Lors C, Tiffreau C, Laboudigue A (2004) Effects of bacterial activities on the release of heavy metals from contaminated dredged sediments. Chemosphere 56:619–630CrossRefGoogle Scholar
  36. McBeth JM, Little BJ, Ray RI, Farrar KM, Emerson D (2011) Neutrophilic iron-oxidizing “Zetaproteobacteria” and mild steel corrosion in nearshore marine environments. Appl Environ Microb 77:1405–1412CrossRefGoogle Scholar
  37. McGuire MM, Edwards KJ, Banfield JF, Hamers RJ (2001) Kinetics, surface chemistry, and structural evolution of microbially mediated sulfide mineral dissolution. Geochim Cosmochim Ac 65:1243–1258CrossRefGoogle Scholar
  38. Morgan B, Lahav O (2007) The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution—basic principles and a simple heuristic description. Chemosphere 68:2080–2084CrossRefGoogle Scholar
  39. Moses CO, Herman JS (1991) Pyrite oxidation at circumneutral pH. Geochim Cosmochim Ac 55:471–482CrossRefGoogle Scholar
  40. Neculita CM, Zagury GJ, Bussière B (2008a) Effectiveness of sulfate-reducing passive bioreactors for treating highly contaminated acid mine drainage: I. Effect of hydraulic retention time. Appl Geochem 23:3442–3451CrossRefGoogle Scholar
  41. Neculita CM, Zagury GJ, Bussière B (2008b) Effectiveness of sulfate-reducing passive bioreactors for treating highly contaminated acid mine drainage: II. Metal removal mechanisms and potential mobility. Appl Geochem 23:3545–3560CrossRefGoogle Scholar
  42. Nordstrom DK, Southam G (1997) Geomicrobiology of sulfide mineral oxidation. Rev Mineral 35:361–390Google Scholar
  43. Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol R 75:361–422CrossRefGoogle Scholar
  44. Ouangrawa M (2007) Étude expérimentale et analyse numérique des facteurs qui influencent le comportement hydro-géochimique de résidus miniers sulfureux partiellement saturés. PhD Dissertation (In French), Department of Civil, Geological, and Mineral Engineering. Ecole Polytechnique de Montreal, Montreal, QC, Canada, 464 ppGoogle Scholar
  45. Postgate JR (1984) The sulphate-reducing bacteria. Cambridge University Press, CambridgeGoogle Scholar
  46. Rickard D, Morse JW (2005) Acid volatile sulfide (AVS). Mar Chem 97:141–197CrossRefGoogle Scholar
  47. Sabra N, Dubourguier H, Benmimouna A, Duval M, Camuzeaux S, Hamieh T (2011) Lithotrophic bacterial leaching of heavy metals from sediments dredged from the Deûle Canal, France. Open Environ Sci 5:18–29CrossRefGoogle Scholar
  48. Sánchez-Andrea I, Sanz JL, Bijmans MFM, Stams AJM (2014) Sulfate reduction at low pH to remediate acid mine drainage. J Hazard Mater 269:98–109CrossRefGoogle Scholar
  49. Sand W, Gerke T, Hallmann R, Schippers A (1995) Sulfur chemistry, biofilm, and the (in)direct attack mechanism - a critical evaluation of bacterial leaching. Appl Microbiol Biotechnol 43:961–966CrossRefGoogle Scholar
  50. Schippers A (2004) Biogeochemistry of metal sulfide oxidation in mining environments, sediments and soils. In: Amend JP, Edwards KJ, Lyons TW (eds) Sulfur biogeochemistry: past and present. Geological Society of America, BoulderGoogle Scholar
  51. Schippers A, Jørgensen BB (2002) Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochim Cosmochim Ac 66:85–92CrossRefGoogle Scholar
  52. Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburden and minesoils. Report EPA-600/2-78-054. US Environmental Protection AgencyGoogle Scholar
  53. Suárez-Suárez A, López-López A, Tovar-Sánchez A, Yarza P, Orfila A, Terrados J, Arnds J, Marqués S, Niemann H, Schmitt-Kopplin P, Amann R, Rosselló-Móra R (2011) Response of sulfate-reducing bacteria to an artificial oil-spill in a coastal marine sediment. Environ Microbiol 13:1488–1499CrossRefGoogle Scholar
  54. Ye S, Laws EA, Zhong S, Ding X, Pang S (2011) Sequestration of metals through association with pyrite in subtidal sediments of the Nanpaishui estuary on the Western Bank of the Bohai Sea, China. Mar Pollut Bull 62:934–941CrossRefGoogle Scholar
  55. Young RA (1993) The Rietveld method. Oxford University Press, NYC, NY, USAGoogle Scholar
  56. Zagury GJ, Colombano SM, Narasiah KS, Ballivy G (1997) Neutralization of acid mine tailings by addition of alkaline sludges from pulp and paper industry. Environ Technol 18:959–973Google Scholar
  57. Zoumis T, Schmidt A, Grigorova L, Calmano W (2001) Contaminants in sediments: remobilisation and demobilisation. Sci Total Environ 266:195–202CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Julien Couvidat
    • 1
  • Carmen Mihaela Neculita
    • 2
    Email author
  • Mostafa Benzaazoua
    • 1
    • 2
  • Thomas Genty
    • 2
    • 3
  • Vincent Chatain
    • 1
  1. 1.Laboratoire DEEP - EA 7429 (Déchets Eaux Environnement Pollutions - Wastes Water Environment Pollutions), Université de Lyon - INSA LyonVilleurbanne CedexFrance
  2. 2.Research Institute on Mines and Environment (RIME)University of Quebec in Abitibi-Temiscamingue (UQAT)Rouyn-NorandaCanada
  3. 3.Technology Center for Industrial Waste (Centre Technologique des Résidus Industriels-CTRI)Rouyn-NorandaCanada

Personalised recommendations