Journal of Soils and Sediments

, Volume 18, Issue 2, pp 467–480 | Cite as

Ammonium-nitrate dynamics in the critical zone during single irrigation events with untreated sewage effluents

  • Jejanny Lucero Hernández-Martínez
  • Blanca PradoEmail author
  • Mario Cayetano-Salazar
  • Wolf-Anno Bischoff
  • Christina Siebe
SUITMA 8: Soils and Sediments in Urban and Mining Areas



Previous studies in the Mezquital Valley evidenced that irrigation with untreated sewage effluent supplies two- to tenfold larger nitrogen doses to crops than common fertilizer recommendations. However, nitrate concentrations in the groundwater are only slightly above threshold concentrations for drinking water. To understand the N dynamics in this agroecosystem, we quantified nitrogen inputs, outputs, and transformations within the rooting zone and in the vadose zone down to the aquifer (i.e., in the critical zone).

Materials and methods

Single irrigation events were monitored in three different fields cropped with either annual rye grass (Lolium rigidum) or oats (Avena sativa L.) harvested for fodder. For each irrigation event, the total amount of water entering and leaving the field was quantified with a flowmeter. Soil pore water was collected with either microsuction cups or observation wells and groundwater was sampled at two wells. All water samples were analyzed for total nitrogen (Nt), ammonium nitrogen (NH4 +–N), nitrate nitrogen (NO3 –N), chloride (Cl−1), and pH. Organic N was calculated as the difference between total N and inorganic N. The water tension and the soil water content were monitored before, during, and after the irrigation with tensiometers and TDR probes, respectively, installed at different depths and at three sites within each field. Batch experiments were conducted to assess the NH4 + adsorption capacity of the soils.

Results and discussion

The irrigations added 537 to 727 kg ha−1 N in form of organic N (40 %) and NH4 +–N (60 %) to the fields. Crops absorbed 65 % of the N and 31 to 66 kg NO3 –N ha−1 leached out beyond the rooting zone (>40 to 130 cm). Batch experiments evidenced an ammonium adsorption capacity of 43 and 53 % of the input ammonium mass. Nitrification dominated over denitrification as the water infiltrated through the soil, evidenced by changes in nitrate concentrations and pH values in the soil pore water. The behavior of the total N/Cl ratio with depth indicated possible N losses due to NH3 volatilization at the field surface, a temporal withdrawal of N from the soil solution due to NH4 +–N adsorption in the rooting zone, as well as probable denitrification losses in the vadose zone.


Although the studied agroecosystem muses the large N inputs relative efficiently, between 7 and 10 % of the added N with each irrigation leaches beyond the crop root zone as nitrate. This is triggered by overflow irrigation, since up to 8,699,000 L of water with N concentrations of up to 50 mg total N L−1 infiltrate rapidly through macropores beyond the rooting zone. Additionally, ammonia volatilization and denitrification seem to be occurring. The latter could provide a self-cleaning potential to the system, if it reaches N2 and needs further verification. Nevertheless, N inputs to the system should match crop uptake to avoid groundwater and atmospheric pollution.


Ammonia volatilization Ammonium adsorption Denitrification Groundwater pollution Nitrate leaching 



Lucero Hernández acknowledges Consejo Nacional de Ciencia y Tecnología (CONACyT) (CVU 166112) for her PhD Scholarship as does Mario Cayetano (CONACyT 245268). The authors thank Olivia Zamora, René Alcala, Kumiko Shimada, and Lucy Mora of the “Laboratorio de Edafología Ambiental” of the “Instituto de Geología,” UNAM, and are grateful to “Laboratorio Universitario de Nanotecnología Ambiental” (LUNA) of the CCADET, UNAM, for performing some of the analyses. The authors thank the support given by the Cornejo-Oviedo family from Las Palmas Ranch. This work was supported by the CONACyT (CB-2013-220489) and the DGAPA-PAPIIT, UNAM IN105715, and DGAPA PAPIME UNAM PE102113.


  1. Abel CDT, Sharma SK, Malolo YN, Maeng SK, Kennedy MD, Amy GL (2012) Attenuation of bulk organic matter, nutrients (N and P) and pathogen indicators during soil passage: effect of temperature and redox conditions in simulated aquifer treatment (SAT). Water Air Soil Pollut 223:5205–5220CrossRefGoogle Scholar
  2. Almanza-Garza V (2000) Reúso agrícola de las aguas residuales de Cd. Juárez, (Chih., México). En el Valle de Juárez y su impacto en la salud pública. Revista Salud Pública y Nutrición (FASPYN) 1 1–11
  3. Asano T, Burton F, Leverenz H (2007) Water reuse: issues, technologies and applications. McGraw Hill, New YorkGoogle Scholar
  4. British Geological Survey (BGS), Comisión Nacional del Agua (CNA), London School of Hygiene and Tropical Medicine (LSHTM), University of Birmingham (UB) (1998) Impact of wastewater reuse on groundwater in the Mezquital Valley, Hidalgo state, México. Final Report. Department for International Development, Comisión Nacional del Agua, British Geological Survey, London School of Hygiene and Tropical Medicine, University of Birmingham, pp 155Google Scholar
  5. Camargo JA, Alonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849CrossRefGoogle Scholar
  6. Chávez A, Rodas K, Prado B et al (2012) An evaluation of the effects of changing wastewater irrigation regime for the production of alfalfa (Medicago sativa). Agric Water Manag 113:76–84CrossRefGoogle Scholar
  7. Chesnaux R, Allen DM (2008) Simulating nitrate leaching profiles in a highly permeable vadose zone. Environ Model Assess 13:527–539CrossRefGoogle Scholar
  8. CNA (2015) Comisión Nacional del Agua, Mexico. 18 October 2015
  9. Costa JL, Massone H, Martínez D, Suero EE, Vidal CM, Bedmar F (2002) Nitrate contamination of a rural aquifer and accumulation in the unsaturated zone. Agric Water Manag 57:33–47CrossRefGoogle Scholar
  10. ISRIC (Centro Internacional de Referencia e Información de Suelos) (1992) Procedures for soil analysis, 3 ed. Van Reeuwijk LP (eds) International Soil Reference and Information Centre, WageningenGoogle Scholar
  11. Del Arenal-Capetillo R (1985) Estudio hidrogeoquímico de la porción centro-oriental del Valle del Mezquital, Hidalgo. Rev Mex Cienc Geol 6:86–97Google Scholar
  12. Derby EN, Casey MFX, Knighton ER (2009) Long-term observations of vadose zone and groundwater nitrate concentrations under irrigated agriculture. Vadose Zone J 8:290–300CrossRefGoogle Scholar
  13. Di HJ, Cameron KC (2002) Nitrate leaching in temperate agroecosystems: sources factors and mitigating strategies. Nutr Cycl Agroecosyst 46:237–256CrossRefGoogle Scholar
  14. Diez JA, Roman R, Caballero R, Caballero A (1997) Nitrate leaching from soils under a maize-wheat-maize sequence, two irrigation schedules and three types of fertilizers. Agr Ecosyst Environ 65:189–199CrossRefGoogle Scholar
  15. Du S-T, Zhang Y-S, Lin X-Y (2007) Accumulation of nitrate in vegetables and its possible implications to human health. Agric Sci China 6:1246–1255CrossRefGoogle Scholar
  16. Dungait JAJ, Cardenas LM, Blackwell MSA, Wu L, Withers PJA, Chadwick DR, Bol R, Murray PJ, Macdonald AJ, Whitmore AP, Goulding KWT (2012) Advances in the understanding of nutrient dynamics and management in UK agriculture. Sci Total Environ 434:39–50CrossRefGoogle Scholar
  17. Dworak T, Berlund M, Laaswer C, Strosser P, Roussard J, Grandmougin B, Kossida M, Kyriazopoulou I, Berbel J, Kolberg S, Rodríguez-Díaz JA, Montesinos P (2007) EU water saving potential. European Commission report, BrusselsGoogle Scholar
  18. U.S. Environmental Protection Agency (2015) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2013. Washington, DCGoogle Scholar
  19. FAO (1985) Water quality for agriculture. R.S. Ayers and D.W. Westcot. Irrigation and drainage paper. 29 Rev. 1 Rome 174 p. Accessed 28 October 2015
  20. Feigin A, Ravina I, Shalhevet J (1991) Irrigation with treated sewage effluent. Management for environmental protection. Springer Verlag, Berlin, 224 pp CrossRefGoogle Scholar
  21. Ferguson BR (2015) Groundwater quality and nitrogen use efficiency in Nebraska’s Central Platte River Valley. J Environ Qual 44:449–459CrossRefGoogle Scholar
  22. Garg KK, Madan K, Jha MK, Kar S (2005) Field investigation of water movement and nitrate transport under perched water table conditions. Biosyst Eng 92:69–84CrossRefGoogle Scholar
  23. González-Méndez B, Webster R, Fiedler S, Loza-Reyes E, Hernández JM, Ruiz-SuárezLG SC (2015) Short-term emissions of CO2 and N2O in response to periodic flood irrigation with waste water in the Mezquital Valley of Mexico. Atmos Environ 101:116–124CrossRefGoogle Scholar
  24. Gouveia G, Eudoxie G (2002) Relationship between ammonium fixation and some soil properties and effect of cation treatment on fixed ammonium release in a range of Trinidad soils. Commun Soil Sci Plan 33:751–1765CrossRefGoogle Scholar
  25. Grahmann K, Verhulst N, Buerkert A, Ortiz-Monasterio I, Govaerts B (2013) Nitrogen use efficiency and optimization of nitrogen fertilization in conservation agriculture. CAB Rev 8(53):1749–8848CrossRefGoogle Scholar
  26. Gupta SK, Gupta RC, Chhabra SK, Eskiocak S, Gupta AB, Gupta R (2008) Health issues related to N pollution in water and air. Indian Agric Environ Health 94:1469–1477Google Scholar
  27. Gurdak JJ, Hanson TR, McMahon BP, Bruce BW, McCray JE, Thyne GD, Reedy RC (2007) Climate variability controls on unsaturated water and chemical movement, high plains aquifer, USA. Vadose Zone J 6:533–547CrossRefGoogle Scholar
  28. Hamilton JA, Stagnitti F, Xiong X et al (2007) Wastewater irrigation: the state of play. Vadose Zone J 6:823–840CrossRefGoogle Scholar
  29. Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1:96–99CrossRefGoogle Scholar
  30. Hernández-Martínez JL, Prado B, Durán-Álvarez JC et al (2014) Movement of water and solutes in a wastewater irrigated piedmont. Procedia Earth Planet Sci 10:365–369CrossRefGoogle Scholar
  31. Jiménez B, Asano T (2008) World overview. Water reclamation and reuse around the world. Water reuse. An international survey of current practice, issues and needs. IWA Publishing, LondonGoogle Scholar
  32. Jiménez B, Chávez A (2004) Quality assessment of an aquifer recharged with wastewater for its potential use as drinking source: “El Mezquital Valley” case. Water Sci Technol 50:269–276Google Scholar
  33. Jiménez CB, Siebe GC, Cifuentes GE (2005) El reúso intencional y no intencional del agua en el Valle de Tula. In: Jiménez B, Marín L (eds) El agua vista en México vista desde la academia. Academia Mexicana de Ciencias, México, pp 33–55Google Scholar
  34. Karr C (2012) Children’s environmental health in agricultural settings. J Agromedicine 17:127–139CrossRefGoogle Scholar
  35. Kass D (1996) Fertilidad de Suelos. San José, Costa RicaGoogle Scholar
  36. Keesstra SD, Geissen V, Mosse K, Piiranen S, Scudeiro E, Leistra M, van Schaik L (2012) Soil as a filter of groundwater quality. Curr Opin Environ Sustain 4:507–516CrossRefGoogle Scholar
  37. Kivaisi AK (2001) The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review. Ecol Eng 16:545–560CrossRefGoogle Scholar
  38. Lesser-Carrillo LE, Lesser-Illades JM, Arellano-Islas S, González-Posadas D (2011) Balance hídrico y calidad del agua subterránea en el acuífero del Valle Mezquital, México central. Rev Mex Cien Geol 28:323–336Google Scholar
  39. Mei L, Yang L, Wang D, Yin B, Hu J, Yin S (2004) Nitrous oxide production and consumption in serially diluted soil suspensions as related to in situ N2O emissions in submerged soils. Soil Biol Biochem 36:1057–1066CrossRefGoogle Scholar
  40. Miller JH, Ela WP, Lansey KE, Chipello PL, Arnold RG (2006) Nitrogen transformations during soil-aquifer treatment of wastewater effluent-oxygen effects in field studies. J Environ Eng 132:1298–1306CrossRefGoogle Scholar
  41. Navarro BS, Navarro GG (2003) Química Agrícola. El suelo y los elementos químicos esenciales para la vida vegetal. Madrid, EspañaGoogle Scholar
  42. Pereira Leal RF, Pittol FL, Herpin U, da fonseca AF, Montes CR, dos Santos Dias CT, Melfi AJ (2010) Carbon and nitrogen cycling in a tropical Brazilian soil cropped with sugarcane and irrigated with wastewater. Agric Water Manag 97:271–276CrossRefGoogle Scholar
  43. Pihlatie M, Syväsalo E, Simojoki A, Esala M, Regina K (2004) Contribution of nitrification and denitrification to N2O production in peat, clay and loamy sabs soils under different soil moisture conditions. Nutr Cycl Agroecosyst 70:135–141CrossRefGoogle Scholar
  44. Rahil HM, Antonopoulos ZV (2007) Simulating soil water flow and nitrogen dynamics in a sunflower field irrigated with reclaimed wastewater. Agric Water Manag 92:142–150CrossRefGoogle Scholar
  45. Raschid-Sally L, Jayakody P (2008) Drivers and characteristics of wastewater agriculture in developing countries: results from a global assessment. Colombo, Sri Lanka: International Water Management Institute (IWMI Research Report 127)Google Scholar
  46. Reid LM, Zhu X, Ma BL (2001) Crop rotation and nitrogen effects on maize susceptibility to gibberella (Fusarium graminearum) ear rot. Plant Soil 237:1–14CrossRefGoogle Scholar
  47. Roy LV, Krapac IG, Chou SFJ et al (1991) Batch-type procedures for estimating soil adsorption of chemicals. U. S. EnvironmentalProtection Agency, IllinoisGoogle Scholar
  48. SAGARPA (2011) Secretaría de agricultura, ganadería, desarrollo rural pesca y alimentación. Agenda de innovación tecnológica del estado de HidalgoGoogle Scholar
  49. SARH (1985) Secretaria de Agricultura y Recursos. Hidráulicos. Datos del laboratorio de Suelos y Aguas, México. Oficinas Centrales del Distrito de Riego 03, Mixquiahuala, HidalgoGoogle Scholar
  50. Schllichting E, Blume HP, Stahr K (1995) Bodenkundliches Praktikum. Pareys Studientexte 81, Blackwell Wissenchafts. Verlag BerlinGoogle Scholar
  51. Shomar B, Osenbrück K, Yahya A (2008) Elevated nitrate levels in the groundwater of the Gaza strip: distribution and sources. Sci Total Environ 398:164–174CrossRefGoogle Scholar
  52. Siebe Ch (1994) Akkumulation, Mobilität und Verfügbarkeit von Schwermetallen in lang jährig mit Abwasser bewässerten Böden Zentral Mexikos. Hohenheimer Bodenkundliche Hefte 17, Stuttgart, Institut für Bodenkunde und Standortslehre (ed), Universität HohenheimGoogle Scholar
  53. Siebe C (1998) Nutrient inputs to soils and their uptake by alfalfa through long-term irrigation with untreated sewage effluent in Mexico. Soil Use Manag 14:119–122CrossRefGoogle Scholar
  54. Siebe C, Jahn R, Stahr K (1996) Manual para la descripción y evaluación ecológica de suelos en campo. Publicación Especial 4. Sociedad Mexicana de Ciencia del Suelo, A. C. Chapingo, Edo. de México, MéxicoGoogle Scholar
  55. Skeffington RA, Wilson JE (1988) Excess nitrogen deposition: issues for consideration. Environ Pollut 54:159–184CrossRefGoogle Scholar
  56. Sophocleous M, Townsend MA, Vocasek F, Ma L, Ashok KC (2010) Treated wastewater and nitrate transport beneath irrigated fields near Dodge City, Kansas. Curr Res Earth Sci Bull 258:1–31Google Scholar
  57. Stenger R, Barble G, Burgess C, Wall A, Clague J (2008) Low nitrate contamination of shallow groundwater in spite of intensive dairying: the effect of reducing conditions in the vadose zone-aquifer continuum. J Hydrol 47:1–24Google Scholar
  58. Tortora GJ, Funke BR, Case CL (2007) Microbiology: an introduction. California, USAGoogle Scholar
  59. Van Reeuwijk LP (1992) Procedures for soil analysis. Technical paper No. 9. International Soil Reference and Information Center. Wageningen, The NetherlandsGoogle Scholar
  60. VenTe C, Mident RD, Mays LW (2000) Hidrología Aplicada. Santa Fe de BogotaGoogle Scholar
  61. Wang Q, Li F, Zhao L, Zhang E, Shi S, Zhao W, Song W, Vance MM (2010) Effects of irrigation and nitrogen application rates on nitrate nitrogen distribution and fertilizer nitrogen loss, wheat yield and nitrogen uptake on a recently reclaimed sandy farmland. Plant Soil 337:325–339CrossRefGoogle Scholar
  62. Ward HM, deKok MT, Levallois P, Brender J, Gulis G, Nolan BT, Vanderslice J (2005) Workgroup report: drinking-water nitrate and health—recent findings and research needs. Environ Health Perspect 113:1607–1614CrossRefGoogle Scholar
  63. WHO (2008) Guidelines to drinking-water quality [electronic resource]: incorporating 1st and 2nd addenda. Vol. 1. Recommendations, 3rd ed. World Health Organization, Geneva, pp 515Google Scholar
  64. Withers JAP, Lord IE (2002) Agricultural nutrient inputs to rivers and groundwaters in the UK: policy, environmental management and research needs. Sci Total Environ 282–283:9–24CrossRefGoogle Scholar
  65. Wlodarczyk T, Kotowska U (2006) Nitrate and ammonium transformation and redox potential changes in organic soil (Eutric Histosol) treated with municipal waste water. Int Agrophys 20:69–76Google Scholar
  66. Yaron B, Dror I, Berkowitz B (2008) Contaminant-induced irreversible changes in properties of the soil-vadose-aquifer zone: an overview. Chemosphere 71:1409–1421CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jejanny Lucero Hernández-Martínez
    • 1
  • Blanca Prado
    • 2
    Email author
  • Mario Cayetano-Salazar
    • 1
  • Wolf-Anno Bischoff
    • 3
  • Christina Siebe
    • 2
  1. 1.Posgrado en Ciencias de la TierraUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  2. 2.Instituto de GeologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  3. 3.TerrAquat ConsultantsNürtingenGermany

Personalised recommendations