Journal of Soils and Sediments

, Volume 17, Issue 1, pp 106–121 | Cite as

Toxic potential of different types of sewage sludge as fertiliser in agriculture: ecotoxicological effects on aquatic, sediment and soil indicator species

  • Nadja Rastetter
  • Almut Gerhardt
Soils, Sec 2 • Global Change, Environ Risk Assess, Sustainable Land Use • Research Article



Treated and processed sewage sludges (biosolids) generated during the treatment of wastewater usually contain substantial concentrations of nutrients, especially phosphorus, which is essential for plant growth. Sewage sludge therefore can be used as an alternative fertiliser in agriculture. But since sewage sludge could also contain pollutants, analysis and ecotoxicological tests on affected soil and stream water organisms are necessary in order to guarantee its harmless use.

Materials and methods

Three test species were chosen to cover the environmental compartments, water, sediment and soil. The following test species and parameters were applied to evaluate the acute effects of three sewage sludge samples: Lemna minor (growth inhibition, discolouration and colony breakup), Gammarus fossarum (mortality, behaviour) and Eisenia fetida (avoidance behaviour). Chemical assessment included nutrients, organic pollutants and heavy metals.

Results and discussion

The assessment of a non-dewatered sludge (S1) sample resulted in an inhibition of growth of L. minor starting from 0.6 g total solid (TS) l−1 after 7 days (EC50 1.2 g TS l−1). G. fossarum displayed significantly decreased movement activity at 0.5 and 1.2 g TS l−1 sludge concentration during an exposure time of 2 days, leading to decreased survival after 4 days of exposure in 0.5 g TS l−1 (LC50 0.5 g TS l−1). After 2 days, E. fetida exhibited an increased avoidance behaviour of contaminated soil from 0.2 g TS kg−1 sewage sludge (EC50 0.4 g TS kg−1). The dewatered sludge samples (S2 and S3) had a lower toxic effect on the test organisms. G. fossarum was the most sensitive test species in the applied test setups. The realistic application amounts of the tested sewage sludge samples of approximately 6.0 g TS kg−1 (maximum allowed application amount of sewage sludge) and approximately 3 g TS kg−1 (maximum agronomical relevant application amount) in worst case studies are higher than the analysed EC50/LC50 values of S1 and of the LC50 (G. fossarum) of S2 and S3.


All three tested sewage sludge samples have to be classified as toxic at high concentration levels under laboratory conditions. Realistic output quantities of S1 will negatively influence soil invertebrates and freshwater organisms (plants and crustacean), whereas the dewatered sludge samples will most likely not have any acute toxic effect on the test organisms in the field. Test with environmental samples should be conducted in order to support this hypothesis.


Phosphorus fertiliser Potential toxic effects Sewage sludge Toxicity tests 



We would like to thank LUFA Nord-West (Hameln, Germany), IASP (Berlin, Germany) and FHNW (Basel, Switzerland) for the chemical analysis of the sludge samples; Dr. Bertram Kuch (ISWA, Stuttgart, Germany) for the chemical analysis of water samples; Matthias Eberius (Lemnatec, Aachen, Germany) for supporting our Lemna cultivation; and Mr. Mütz/Mr. Krannich (composting plant, Singen, Germany) for providing the compost of green waste for our earthworm tests. The project was funded by the European Commission under the Seventh Framework Programme (Priority “From Prototype to Market”, Contract No. 308645–P-REX) to LimCo International GmbH as project partner.


  1. AbfKlärV (1992) Klärschlammverordnung Bundesgesetzblatt BGBl. I (15.04.1992), p 912Google Scholar
  2. Beller HR, Simoneit BRT (1986) Polychlorinated-biphenyls and hydrocarbons distributions among bound and unbound lipid fractions of estuarine sediments. ACS Symp Ser 305:198–214CrossRefGoogle Scholar
  3. Beller HR, Simoneit BRT (1988) Hexachlorophene distributions in estuarine sediments. Bull Environ Contam Toxicol 41:645–650CrossRefGoogle Scholar
  4. Biesinger KE, Christensen GM (1972) Effects of various metals on survival, growth, reproduction, and metabolism of Daphnia magna. J Fish Res Board Can 29:1691–1700CrossRefGoogle Scholar
  5. Carbonell G, Pro J, Gómez N, Babín MM, Fernández C, Alonso E, Tarazona JV (2009) Sewage sludge applied to agricultural soil: ecotoxicological effects on representative soil organisms. Ecotoxicol Environ Saf 72:1309–1319CrossRefGoogle Scholar
  6. DIN (1985) DIN 38414–2: Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung—Schlamm und Sedimente (Gruppe S)—Bestimmung des Wassergehaltes und des Trockenrückstandes bzw. der Trockensubstanz. Deutsches Institut für NormungGoogle Scholar
  7. DüMV (2012) Verordnung über das Inverkehrbringen von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln (Düngemittelverordnung). Bundesgesetzblatt BGBl. I (05.12.2012), S 2482Google Scholar
  8. DüV (2012) Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der guten fachlichen Praxis beim Düngen (Düngeverordnung). Bundesgesetzblatt BGBl. I (27.02.2007, 24.02.2012), p 221, p 212Google Scholar
  9. EC (2008a) Directive of the European Parliament and of the Council on waste and repealing certain directives. Official Journal of the European Union 2008/98/EC No. L 312/3Google Scholar
  10. EC (2008b) Directive of the European Parliament and of the Council on environmental quality standards in the field of water policy. Official Journal of the European Union 2008/105/EC No. L 348/84Google Scholar
  11. EEC (1986) Council Directive on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Official Journal of the European Communities 86/278/EEC No L 181/6Google Scholar
  12. EPA US (1996) Ecological effects test guidelines. Gammarid Acute Toxicity Test OPPTS 850.1020Google Scholar
  13. Felten V, Charmantier G, Charmantier-Daures M, Aujoulat F, Garric J, Geffard O (2008) Physiological and behavioural responses of Gammarus pulex exposed to acid stress. Comp Biochem Physiol C 147:189–197Google Scholar
  14. Fjällborg B, Dave G (2003) Toxicity of copper in sewage sludge. Environ Int 28:761–769CrossRefGoogle Scholar
  15. Fjällborg B, Ahlberg G, Nilsson E, Dave G (2005) Identification of metal toxicity in sewage sludge leachate. Environ Int 31:25–31CrossRefGoogle Scholar
  16. Forget J, Pavillon J-F, Beliaeff B, Bocquené G (1999) Joint action of pollutant combinations (pesticides and metals) on survival (LC50 values) and acetylcholinesterase activity of Tigriopus brevicornis (Copepoda, Harpacticoida). Environ Toxicol Chem 18:912–918CrossRefGoogle Scholar
  17. Gerhardt A (1994) Short term toxicity of iron (Fe) and lead (Pb) to the mayfly Leptophlebia marginata (L.) (Insecta) in relation to freshwater acidification. Hydrobiologia 284:157–168CrossRefGoogle Scholar
  18. Gerhardt A (1995a) Monitoring behavioural responses to metals in Gammarus pulex (L.) (Crustacea) with impedance conversion. Environ Sci Pollut Res 2:15–23CrossRefGoogle Scholar
  19. Gerhardt A (1995b) Joint and single toxicity of Cd and Fe related to metal uptake in the mayfly Leptophlebia marginata (L.) (Insecta). Hydrobiologia 306:229–240CrossRefGoogle Scholar
  20. Gerhardt A, Svensson E, Clostermann M, Fridlund B (1994) Monitoring of behavioral patterns of aquatic organisms with an impedance conversion technique. Environ Int 20:209–219CrossRefGoogle Scholar
  21. Gerhardt A, Carlsson A, Ressemann C, Stich KP (1998) New online biomonitoring system for Gammarus pulex (L.) (Crustacea): in situ test below a copper effluent in South Sweden. Environ Sci Technol 32:150–156CrossRefGoogle Scholar
  22. Griebenow G (1998) Ökotoxikologische Bewertung (Fischtest, Daphnientest, Algentest, Leuchtbakerientest). Report Number: 19/01/98. BASF Schwarzheide GmbH, SchwarzheideGoogle Scholar
  23. Gutiérrez M, Etxebarria J, de las Fuentes L (2002) Evaluation of wastewater toxicity: comparative study between Microtox® and activated sludge oxygen uptake inhibition. Water Res 36:919–924CrossRefGoogle Scholar
  24. Holzem RM, Stapleton HM, Gunsch CK (2014) Determining the ecological impacts of organic contaminants in biosolids using a high-throughput colorimetric denitrification assay: a case study with antimicrobial agents. Environ Sci Technol 48:1646–1655CrossRefGoogle Scholar
  25. Hund-Rinke K, Wiechering H (2001) Earthworm avoidance test for soil assessments. J Soils Sediments 1:15–20CrossRefGoogle Scholar
  26. ISO (2005) BS ISO 20079: Water quality. Determination of the toxic effect of water constituents and waste water on duckweed (Lemna minor). Duckweed growth inhibition test. International Organization in Standardization, GenevaGoogle Scholar
  27. ISO (2008) BS ISO 17512–1: Soil quality. Avoidance test for determining the quality of soils and effects of chemicals on behaviour. Part 1: test with earthworms (Eisenia fetida and Eisenia andrei). International Organization in Standardization, GenevaGoogle Scholar
  28. ISO (2009a) BS ISO 11274: soil quality. Determination of the water-retention characteristic. Laboratory methods. International Organization in Standardization, GenevaGoogle Scholar
  29. ISO (2009b): DIN EN ISO 11885: Wasserbeschaffenheit—Bestimmung von ausgewählten Elementen durch induktiv gekoppelte Plasma-Atom-Emissionsspektrometrie (ICP-OES). International Organization in StandardizationGoogle Scholar
  30. Kienle C, Köhler H-R, Gerhardt A (2009) Behavioural and developmental toxicity of chlorpyrifos and nickel chloride to zebrafish (Danio rerio) embryos and larvae. Ecotoxicol Environ Saf 72:1740–1747CrossRefGoogle Scholar
  31. Kosalwat P, Knight A (1987) Acute toxicity of aqueous and substrate-bound copper to the midge, Chironomus decorus. Arch Environ Contam Toxicol 16:275–282CrossRefGoogle Scholar
  32. Kraak MHS, Lavy D, Schoon H, Toussaint M, Peeters WHM, van Straalen NM (1994) Ecotoxicity of mixtures of metals to the zebra mussel Dreissena polymorpha. Environ Toxicol Chem 13:109–114CrossRefGoogle Scholar
  33. KrWG (2013) Gesetz zur Förderung der Kreislaufwirtschaft und Sicherung der umweltverträglichen Bewirtschaftung von Abfällen (Kreislaufwirtschaftsgesetz). Bundesgesetzblatt BGBl. I (24.02.2012, 22.05.2013), p 212, p 1324Google Scholar
  34. KTBL (2005) Faustzahlen für die Landwirtschaft, 13. Auflage, GermanyGoogle Scholar
  35. Martienssen W, Warlimont H (2005) Springer handbook of condensed matter and materials data. Springer Verlag, Berlin, HeidelbergCrossRefGoogle Scholar
  36. Natal-da-Luz T, Tidona S, Jesus B, Morais PV, Sousa JP (2009a) The use of sewage sludge as soil amendment. The need for an ecotoxicological evaluation. J Soils Sediments 9:246–260CrossRefGoogle Scholar
  37. Natal-da-luz T, Tidona S, Van Gestel CAM, Morais PV, Sousa JP (2009b) The use of Collembola avoidance tests to characterize sewage sludges as soil amendments. Chemosphere 77:1526–1533CrossRefGoogle Scholar
  38. Naumann B, Eberius M, Appenroth K-J (2007) Growth rate based dose–response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St. J Plant Physiol 164:1656–1664CrossRefGoogle Scholar
  39. Neuhauser EF, Loehr RC, Milligan DL, Malecki MR (1985) Toxicity of metals to the earthworm Eisenia fetida. Biol Fertil Soils 1:149–152CrossRefGoogle Scholar
  40. OECD (2000a) OECD guideline for the testing of chemicals 217: soil microorganisms. Carbon Transformation Test. Organization for Economic Cooperation and DevelopmentGoogle Scholar
  41. OECD (2000b) OECD guideline for the testing of chemicals 216: soil microorganisms. Nitrogen Transformation Test. Organization for Economic Cooperation and DevelopmentGoogle Scholar
  42. Pamreddy A, Hidalgo M, Havel J, Salvadó V (2013) Determination of antibiotics (tetracyclines and sulfonamides) in biosolids by pressurized liquid extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr A 1298:68–75CrossRefGoogle Scholar
  43. Pöppinghaus K, Schneider W, Filla W, Sensen S (1994) Abwassertechnologie-Entstehung, Ableitung, Behandlung, Analytik der Abwässer, Forschungseinrichtung für Wasser- und Reststofftechnologie FIP Institut Pöppinghaus GmbH, Prof. Dr. K. Pöppinghaus und Institut Fresenius GmbH, Taunusstein-Neuhhof, Prof. Dr. W. Fresenius, Prof. Dr. W. Schneider, ISBN 978-3-662-05578-6, Springer Verlag Berlin Heidelberg GmbHGoogle Scholar
  44. P-REX (2014) Sustainable sewage sludge management fostering phosphorus recovery and energy efficiency. Project Periodic Report No. 1Google Scholar
  45. Richnow HH, Seifert R, Hefter J, Kästner M, Mahro B, Michaelis W (1994) Metabolites of xenobiotica and mineral oil constituents linked to macromolecular organic matter in polluted environments. Org Geochem 22:671-IN10Google Scholar
  46. Roig N, Sierra J, Nadal M, Marti E, Navalon-Madrigal P, Schuhmacher M, Domingo JL (2012) Relationship between pollutant content and ecotoxicity of sewage sludges from Spanish wastewater treatment plants. Sci Total Environ 425:99–109CrossRefGoogle Scholar
  47. RPA (2008) RPA MLaW: environmental, economic and social impacts of the use of sewage sludge on land, Consultation Report on Options and ImpactsGoogle Scholar
  48. SenGupta AK (2002) Environmental separation of heavy metals-engineering processes. Lewis Publishers-CRC Press CompanyGoogle Scholar
  49. Sorvari J, Sillanpää M (1996) Influence of metal complex formation on heavy metal and free EDTA and DTPA acute toxicity determined by Daphnia magna. Chemosphere 33:1119–1127CrossRefGoogle Scholar
  50. Spurgeon DJ, Hopkin SP, Jones DT (1994) Effects of cadmium, copper, lead and zinc on growth, reproduction and survival of the earthworm Eisenia fetida (Savigny): assessing the environmental impact of point-source metal contamination in terrestrial ecosystems. Environ Pollut 84:123–130CrossRefGoogle Scholar
  51. Stoven K, Schnug E (2009) Long term effects of heavy metal enriched sewage sludge disposal in agriculture on soil biota. Landbauforsch Volk 59:131–138Google Scholar
  52. Taylor EJ, Maund SJ, Pascoe D (1991) Toxicity of four common pollutants to the freshwater macroinvertebrates Chironomus riparius Meigen (Insecta:Diptera) and Gammarus pulex (L.) (Crustacea:Amphipoda). Arch Environ Contam Toxicol 21:371–376CrossRefGoogle Scholar
  53. UM (2007) Perfluorierte Tenside (PFT) im Klärschlamm in Baden-Württemberg, Ministry of the Environment Baden-Württemberg, StuttgartGoogle Scholar
  54. USGS (2009) Mineral commodity summaries: phosphate rock. United States Geological SurveyGoogle Scholar
  55. Vaccari DA (2009) Phosphorus: a looming crisis. Sci Am 300:54–59CrossRefGoogle Scholar
  56. van Gestel C, Jonker M, Kammenga J, Laskowski R, Svendsen C (2011) Mixture toxicity. Linking approaches from ecological and human toxicology. CRC Press, 320 ppGoogle Scholar
  57. VDLUFA (1995) Die Untersuchung von Düngemitteln. Verband deutscher landwirtschaftlicher Untersuchungs- und Forschungsanstalten, Band IIGoogle Scholar
  58. VDLUFA (1996) Bestimmung von polycyclischen aromatischen Kohlenwasserstoffen in Böden, Klärschlämmen und Komposten. Verband deutscher landwirtschaftlicher Untersuchungs- und Forschungsanstalten, Band VIIGoogle Scholar
  59. Walter G (1966) Ökologische Untersuchungen über die Wirkung Fe-II-haltiger Braunkohlegruben-Abwässer auf Vorfluterorganismen. Wissenschaftliche Zeitschrift der Karl-Marx-Universität Leipzig 15:247–269Google Scholar
  60. Wang W (1986) Toxicity tests of aquatic pollutants by using common duckweed. Environ Pollut B 11:1–14CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.LimCo International GmbHTechnology Center KonstanzKonstanzGermany

Personalised recommendations