Skip to main content
Log in

Decomposition of cattle manure and colonization by macroinvertebrates in sediment of a wetland of the Middle Paraná River

  • Sediments, Sec 4 • Sediment-Ecology Interactions • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The study was carried out in a wetland of the Middle Paraná River system, Argentina, in order to evaluate the processes associated with the decomposition of manure, which includes changes in chemical composition, nutrient release of manure, and colonization of invertebrates. We also compared the invertebrate assemblage that colonized manure with that present in the benthos of the wetland.

Materials and methods

Nylon bags were filled with fresh cattle manure and anchored to the littoral zone of the wetland. Six bags were collected after 1, 2, 6, 14, 21, 28, 33, 55, and 79 days: three for invertebrate determination and the other three bags for determination of dry mass and chemical analyses. The nutrient content, cellulose, lignin, and total phenolic compounds of manure were determined. In addition, the leachate of manure was collected for nutrient analyses. Samples of the wetland benthic sediment were collected for benthic invertebrate determination and particle size analyses. Spearman rank correlation was used to evaluate the relationship between chemical compounds of manure and breakdown rate. Principal component analysis was used to explore invertebrate assemblage composition of manure and sediment during the experiment.

Results and discussion

Limnodrilus, Dero, and Chironomus were dominant in the manure. Gatherer-collector was the dominant group in the manure, comprising almost 95 % of the total density of invertebrates. Breakdown rate was significantly related with nutrients, cellulose and total phenolics of manure. An ordination plot showed changes in invertebrate assemblages of manure and sediment samples over time.

Conclusions

This study provides new insight on the importance of manure as a substrate for macroinvertebrate colonization. Cattle manure needs to be considered as a potential source of nutrients for aquatic systems and a substrate for invertebrate assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ainswoth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2:875–877

    Article  Google Scholar 

  • Andersen A (1976) An ignition method for determination of total phosphorous in lake sediments. Water Res 10:329–331

    Article  CAS  Google Scholar 

  • APHA (2005) In: Eaton AD, Clesceri LS, Rice EW, Greenberg AE (eds) Standard methods for the examination of water and wastewater, 21st edition. American Public Health Association (APHA), Washington

    Google Scholar 

  • Archer S, Smeins FE (1991) Ecosystem-level processes. In: Heitschmidt RK, Stuth JW (eds) Grazing management: an ecological perspective. Timber Press, Portland, pp 109–140

    Google Scholar 

  • Ardón M, Stallcup LA, Pringle C (2006) Does leaf quality mediate the stimulation of leaf breakdown by phosphorus in neotropical streams? Freshw Biol 51:618–633

    Article  Google Scholar 

  • Ardón M, Pringle CM, Eggert SL (2009) Does leaf chemistry differentially affect breakdown in tropical vs temperate streams? Importance of standardized analytical techniques to measure leaf chemistry. J N Am Benthol Soc 28:440–453

    Article  Google Scholar 

  • Box JD (1983) Estimation of the Folin Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res 17:511–525

    Article  CAS  Google Scholar 

  • Brinkhurst R, Marchese M (1992) Guía para la identificación de Oligoquetos acuáticos continentales de Sud y Centroamérica. Asociación de Ciencias Naturales del Litoral. Colección Climax N° 6, Segunda Edición, Asociación de Ciencias Naturales del Litoral, Santa Fe, Argentina, 207 p

  • Campbell IC, Fuchshuber L (1995) Polyphenols, condensed tannins, and processing rates of tropical and temperate leaves in an Australian stream. J N Am Benthol Soc 14:174–182

    Article  Google Scholar 

  • Collins SL, Knapp AK, Briggs JM, Blair JM, Steinauer EM (1998) Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280:745–747

    Article  CAS  Google Scholar 

  • Cummins KW, Wilzbach MA, Gates DM, Perry JB, Taliaferro WB (1989) Shredders and riparian vegetation. Bioscience 39:24–30

    Article  Google Scholar 

  • Del Rosario RB, Betts EA, Resh VH (2002) Cow manure in headwater streams: tracing aquatic insect responses to organic enrichment source. J N Am Benthol Soc 21:278–289

    Article  Google Scholar 

  • Delong MD, Brusven MA (1998) Macroinvertebrate community structure along the longitudinal gradient of an agriculturally impacted stream. Environ Manag 22:445–457

    Article  Google Scholar 

  • Domínguez E, Fernández H (2009) Macroinvertebrados bentónicos Sudamericanos. Fundación Miguel Lillo, Tucumán, 654 p

    Google Scholar 

  • EPA (2013) Aquatic life ambient water quality criteria for ammonia—freshwater 2013. Environmental Protection Agency (EPA), Washington

    Google Scholar 

  • Ezcurra de Drago I, Marchese M, Montalto L (2007) Benthic invertebrates. In: Iriondo MH, Paggi JC, Parma MJ (eds) The Middle Parana River: limnology of a subtropical wetland. Springer, Berlin Heidelberg

    Google Scholar 

  • Franken RJM, Waluto B, Peeters ETHM, Gardeniers JJP, Beijer JAJ, Scheffer M (2005) Growth of shredders on leaf litter biofilms: the effect of light intensity. Freshw Biol 50:459–466

    Article  Google Scholar 

  • Gessner MO, Chauvet H (1994) Importance or stream microfungi in controlling breakdown rates of leaf litter. Ecology 75:1807–1817

    Article  Google Scholar 

  • Goering HK, Van Soest PJ (1970) Forage fiber analyses (apparatus, reagents, procedures, and some applications). Agriculture handbook no 379, U.S. Agricultural Research Service. 

  • Herbst DB, Bogan MT, Roll SK, Safford HD (2012) Effects of livestock exclusion on in-stream habitat and benthic invertebrate assemblages in montane streams. Freshw Biol 57:204–217

    Article  Google Scholar 

  • Hilton J, Rigg E (1983) Determination of nitrate in lake water by the adaptation of the hydrazine-copper reduction method for use on a discrete analyser: performance statistics and an instrument-induced difference from segmented flow conditions. Analyst 108:1026–1028

    Article  CAS  Google Scholar 

  • Hongo H, Masikini M (2003) Impact of immigrant pastoral herds to fringing wetlands of Lake Victoria in Magu district Mwanza region, Tanzania. Phys Chem Earth 28:1001–1007

    Article  Google Scholar 

  • Hutchens JJ, Benfield EF (2000) Effects of forest defoliation by the gypsy moth on detritus processing in Southern Appalachian streams. Am Midl Nat 143:397–404

    Article  Google Scholar 

  • Irons III J G, Oswood M W, Bryant JP (1988) Consumption of leaf detritus by a stream shredder: influence of tree species and nutrient status. Hydrobiologia 160:53–61

  • Irons JG, Oswood MW, Stout JR, Pringles CM (1994) Latitudinal patterns in leaf litter breakdown: is temperature really important? Freshw Biol 32:401–411

    Article  Google Scholar 

  • Kato T, Kuroda H, Nakasone H (2009) Runoff characteristics of nutrients from an agricultural watershed with intensive livestock production. J Hydrol 368:79–87

    Article  CAS  Google Scholar 

  • Knowlton MF, Jones JR (1997) Trophic status of Missouri River floodplain lakes in relation to basin type and connectivity. Wetlands 17:468–475

    Article  Google Scholar 

  • Koroleff F (1969) Direct determination of ammonia in natural waters as indophenol blue. In: Information on Techniques and Methods for Seawater Analysis. International Council for the Exploration of the Sea. Intedab Report No. 3, pp 19–22

  • Koroleff F (1972) Determination of total nitrogen in natural waters by means of persulfate oxidation. New Baltic Manual with Methods for Sampling and Analysis of Physical, Chemical and Biological Parameters, International Council for Exploration of the Sea, Charlottenlund, pp 73–78.  

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Li OY, Ng CY, Dudgeon D (2009) Effects of leaf toughness and nitrogen content on litter breakdown and macroinvertebrates in a tropical stream. Aquat Sci 71:80–93

    Article  CAS  Google Scholar 

  • Marchese M, Ezcurra de Drago I (2006) Bentos como indicador de condiciones tróficas del sistema del río Paraná Medio. In: Tundisi J, Matsumura T, Tundisi T, Sidagis Galli C (eds) Eutrofização na América do Sul: Causas. Consequências e Tecnologias de Gerenciamento e Controle, Argentina, pp 297–316

    Google Scholar 

  • Marchese M, Paggi A (2003) Diversidad de Oligochaeta (Annelida) y Chironomidae (Diptera) del Litoral fluvial argentino. In: Aceñolaza FA (ed) Temas de la Biodiversidad del Litoral Fluvial Argentino. INSUGEO, Ediciones Magna, Tucumán, pp 217–224

    Google Scholar 

  • Mathuriau C, Chauvet E (2002) Breakdown of leaf litter in a neotropical stream. J N Am Benthol Soc 21:384–396

    Article  Google Scholar 

  • Melillo JM, Naiman RJ, Aber JD, Eshleman KN (1983) The influence of substrate quality and stream size on wood decomposition dynamics. Oecologia 58:281–285

    Article  Google Scholar 

  • Merritt RW, Cummins KW (1996) An introduction to the aquatic insects of North America. Kendall Hunt, USA

    Google Scholar 

  • Mesa L, Mayora G, Saigo M, Giri F (2015) Nutrient dynamics in wetlands of the Middle Paraná River subjected to rotational cattle management. Wetlands 35:1117–1125

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Neiff JJ, de Neiff AP (1990) Litterfall, leaf decomposition and litter colonization of Tessaria integrifolia (compositae) in the Paraná river floodplain. Hydrobiologia 203:45–52

    Article  Google Scholar 

  • OECD (1982) Eutrophication of waters. Monitoring, assessment and control. OECD, Paris, 154 pp

    Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322

    Article  Google Scholar 

  • Pagioro TA, Thomaz SM (1999) Decomposition of Eichhornia azurea from limnologically different environments of the Upper Paraná River floodplain. Hydrobiologia 411:45–51

    Article  Google Scholar 

  • Pettit NE, Davies T, Fellman JB, Grierson PF, Warfe DM, Davies PM (2012) Leaf litter chemistry, decomposition and assimilation by macroinvertebrates in two tropical streams. Hydrobiologia 680:63–77

    Article  CAS  Google Scholar 

  • Pinchak WE, Smith MA, Hart RH, Waggoner JW (1991) Beef cattle distribution patterns on foothill range. J Range Manage 44:267–275

    Article  Google Scholar 

  • Poi de Neiff AP, Neiff JJ, Casco SL (2006) Leaf litter decomposition in three wetland types of the Paraná River Floodplain. Wetlands 26:558–566

    Article  Google Scholar 

  • PROSAP (2009) Estrategia provincial para el sector agroalimentario. Provincia de Entre Ríos. Ministerio de Agricultura, Ganadería y Pesca de la Nación [en línea]. www.desarrolloentrerriano.wordpress.com

  • Quintana RD, Bó RF, Astrada E, Reeves C (2014) Lineamientos para una ganadería ambientalmente sustentable en el Delta del Paraná. Fundación para la Conservación y el Uso Sustentable de los Humedales, Argentina, Buenos Aires

    Google Scholar 

  • Rader RB (1994) Macroinvertebrates of the northern Everglades: species composition and trophic structure. Fla Sci 57:22–33

    Google Scholar 

  • Rader RB, Richardson CJ (1994) Response of macroinvertebrates and small fish to nutrient enrichment in the northern Everglades. Wetlands 14:134–146

    Article  Google Scholar 

  • Ramseyer U, Marchese M (2009) Leaf litter of Erythrina crista-galli L. (ceibo): trophic and substratum resources for benthic invertebrates in a secondary channel of the Middle Paraná River. Limnetica 28:1–10

    Google Scholar 

  • Reid DJ, Quinn GP, Lake PS, Reich P (2008) Terrestrial detritus supports the food webs in lowland intermittent streams of south-eastern Australia: a stable isotope study. Freshw Biol 53:2036–2050

    Article  Google Scholar 

  • Rice DL (1982) The detritus nitrogen problem: new observations and perspectives from organic geochemistry. Mar Ecol Prog Ser 9:153–162

    Article  CAS  Google Scholar 

  • Rice DL, Hanson RB (1984) A kinetic model for detritus nitrogen: role of the associated bacteria in nitrogen accumulation. Bull Mar Sci 35:326–340

    Google Scholar 

  • Roath LR, Krueger WC (1982) Cattle grazing and behavior on a forested range. J Range Manage 35:332–338

    Article  Google Scholar 

  • Scrimgeour GJ, Kendall S (2003) Effects of livestock grazing on benthic invertebrates from a native grassland ecosystem. Freshw Biol 48:347–362

    Article  Google Scholar 

  • Sigua GC (2010) Sustainable cow-calf operations and water quality: a review. Agron Sustain Dev 30:631–648

    Article  CAS  Google Scholar 

  • Steinman AD, Conklin J, Bohlen PJ, Uzarski DG (2003) Influence of cattle grazing and pasture land use on macroinvertebrate communities in freshwater wetlands. Wetlands 23:877–889

    Article  Google Scholar 

  • Stohlgren TJ (1988) Litter dynamics in two Sierran mixed conifer forests. 2. Nutrient release in decomposing leaf litter. Can J For Res 18:1136–1144

    Article  Google Scholar 

  • Stout RJ (1989) Effects of condensed tannins on leaf processing in mid-latitude and tropical streams: a theoretical approach. Can J Fish Aquat Sci 46:1097–1106

    Article  CAS  Google Scholar 

  • Townsend CR, Arbuckle CJ, Crowl TA, Scarsbrook MR (1997) The relationships between land use and physicochemical, food resources and macroinvertebrate communities of the Taieri River, New Zealand: a hierarchically scaled approach. Freshw Biol 37:177–191

    Article  Google Scholar 

  • Trivinho-Strixino S (2011) Larvas de Chironomidae. Guía de identificação. Dpto. de Hidrobiologia, Lab. de Entomologia Aquática, UFSCar, São Carlos, 371 p

    Google Scholar 

  • Wall R, Lee CM (2010) Aggregation in insect communities colonizing cattle-dung. Bull Entomol Res 100:481–487

    Article  CAS  Google Scholar 

  • Wallace JB, Webster JR (1996) The role of macroinvertebrates in stream ecosystem function. Annu Rev Entomol 41:115–139

    Article  CAS  Google Scholar 

  • Wallace JB, Eggert SL, Meyer JL, Webster JR (1997) Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102–104

    Article  CAS  Google Scholar 

  • Wallace MM, Ostertag R, Cowie RH (2011) Macro-invertebrates accelerate litter decomposition and nutrient release in a Hawaiian rainforest. Soil Biol Biochem 43:206–211

    Article  Google Scholar 

  • Wantzen KM, Wagner R (2006) Detritus processing by invertebrate shredders: a neotropical temperate comparison. J N Am Benthol Soc 25:216–232

    Article  Google Scholar 

  • Wantzen KM, Yule CM, Mathooko JM, Pringle CM (2008) Organic matter processing in tropical streams, Chapter 3. In: Dudgeon D (ed) Tropical stream ecology. Elsevier, London, pp 44–64

    Google Scholar 

  • Webster JR, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Annu Rev Ecol Syst 17:567–594

    Article  Google Scholar 

  • Weigel BM, Lyons J, Paine LK, Dodson SI, Undersander DJ (2000) Using stream macroinvertebrates to compare riparian land use practices on cattle farms in Southwestern Wisconsin. J Freshw Ecol 15:93–106

    Article  Google Scholar 

  • Wentworth C (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392

    Article  Google Scholar 

  • Yoshitake S, Soutome H, Koizumi H (2014) Deposition and decomposition of cattle dung and its impact on soil properties and plant growth in a cool-temperate pasture. Ecol Res 29:673–684

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Andrea Dubois, Alicia Schaller, and Laura Bergero for their field assistance. This research was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Secretaría de Ciencia, Tecnología e Innovación (Santa Fe, SECTeI 2012, N° 2010/103/12) and Agencia Nacional de Promoción Científica y Tecnológica (PICT 2012 N°0906). The English of the manuscript was reviewed by Language Edit http://www.languageedit.com/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia M. Mesa.

Additional information

Responsible editor: Geraldene Wharton

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesa, L.M., Maldini, C., Mayora, G. et al. Decomposition of cattle manure and colonization by macroinvertebrates in sediment of a wetland of the Middle Paraná River. J Soils Sediments 16, 2316–2325 (2016). https://doi.org/10.1007/s11368-016-1465-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-016-1465-7

Keywords

Navigation