Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

For how long does the quality and quantity of residues in the soil affect the carbon compartments and CO2-C emissions?

  • 327 Accesses

  • 3 Citations



The mineralization/immobilization of nutrients from the crop residues is correlated with the quality of the plant material and carbon compartments in the recalcitrant and labile soil fractions. The objective of this study was to correlate the quality and quantity of crop residues incubated in the soil with carbon compartments and CO2-C emission, using multivariate analysis.

Materials and methods

The experiment was conducted in factorial 4 + 2 + 5 with three replicates, referring to three types of residues (control, sugarcane, Brachiaria, and soybean), and two contributions of the crop residues in constant rate, CR (10 Mg ha−1 residue), and agronomic rate, AR (20, 8, and 5 Mg ha−1 residue, respectively, for sugarcane, soybean, and Brachiaria), evaluated five times (1, 3, 6, 12, and 48 days after incubation). At each time, we determined the CO2-C emission, nitrogen and organic carbon in the soil, and the residues. In addition, the microbial biomass and water-soluble, labile, and humic substance carbons fractionated into fulvic acids, humic acids and humin were quantified.

Results and discussion

Higher CO2-C emissions occurred in the soil with added residue ranging from 0.5 to 1.1 g CO2-C m−2 h−1 in the first 6 days of incubation, and there was a positive correlation with the less labile organic soil fractions as well as residue type. In the final period, after 12 days of soil incubation, there was a higher relation of CO2-C emission with carbon humin. The sugarcane and soybean residue (20 Mg ha−1) promoted higher CO2-C emission and the reduction of carbon residue. The addition of residue contributed to an 82.32 % increase in the emission of CO2-C, being more significant in the residue with higher nitrogen availability.


This study shows that the quality and quantity of residue added to soil affects the carbon sequestration and CO2-C emission. In the first 6 days of incubation, there was a higher CO2-C emission ratio which correlates with the less stable soil carbon compartments as well as residue. In the final period of incubation, there is no effect of quality and quantity of residue added to soil on the CO2-C emission.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Almeida D, Klauberg Filho O, Felipe AF, Almeida HC (2009) Carbono, nitrogênio e fósforo microbiano do solo sob diferentes coberturas em pomar de produção orgânica de maçã no sul do Brasil. Bragantia. doi:10.1590/S0006-87052009000400028

  2. Almeida RF, Mikhael JER, Franco FO, Ribeiro BT, Ferreira AD, Mendonça ES, Wendling B (2014) CO2-C Emissions from soils incubated with sugarcane residue and nitrogen fertilizer. African Journal of Biotechology 13:3376–3384

  3. Alvaro-Fuentes J, Paustian K (2011) Potential soil carbon sequestration in a semiarid Mediterranean agroecosystem under climate change: quantifying management and climate effects. Plant Soil 338:261–272

  4. Aneja MK, Sharma S, Fleischmann F, Stich S, Heller W, Bahnweg G, Munch JC, Schloter M (2006) Microbial colonization of beech and spruce litter—influence of decomposition site and plant litter species on the diversity of the microbial community. Microbial Ecol 52:127–135

  5. Andreux P, Becerra SP (1975) Fraccionamiento y caracterización del material húmico en algunos suelos de sabana de la Orinaquia Colombiana. Turrialba 25:191–198

  6. Assis CP, Jucksch I, Sá Mendonça E, Neves JCL (2006) Carbono e nitrogênio em agregados de Latossolo submetido a diferentes sistemas de uso e manejo. Pesq Agrop Brasileira 41:1541–1550

  7. Badía D, Martí C, Aguirre AJ (2013) Residue management effects on CO2 efflux and C storage in different Mediterranean agricultural soils. Sci Total Environ 465:233–239

  8. Baker JM, Ochsner TE, Venterea RT, Griffis RP (2007) Tillage and soil carbon sequestration—what do we really know? Agriculture Ecosyst Environ 118:1–5

  9. Balota EL, Calegari A, Nakatani AS, Coyne MS (2014) Benefits of winter cover crops and no-tillage for microbial parameters in a Brazilian Oxisol: a long-term study. Agr Ecosyst Environ 197:31–40

  10. Barros RP (2012) Diversidade de fungos em um vertissolo com adição de vinhaça na cultura de cana-de-açúcar (Saccharum officinarum). Revista Uniabeu 5:181–196

  11. Babujia LC, Hungria M, Franchini JC, Brookes PC (2010) Microbial biomass and activity at various soil depths in a Brazilian oxisol after two decades of no-tillage and conventional tillage. Soil Biol Biochem 42:2174–2181

  12. Berg B (1986) Nitrogen release from litter and humus in coniferous forest soil—a mini review. Scand J Forest Res 1:359–369

  13. Black CA (1965) Methods of soil analysis: part 2: chemical and microbiological properties. American Society of Agronomy, Madison

  14. Bordonal RO, Figueiredo EB, Aguiar DA, Adami M, Rudorff BFT, La Scala N (2013) Greenhouse gas mitigation potential from green harvested sugarcane scenarios in São Paulo State, Brazil. Biomass Bioenerg 59:195–207

  15. Brady NC, Weil RR (2008) The nature and properties of soils. Prentice Hall, New Jersey

  16. Canellas LP, Velloso ACX, Marciano CR, Ramalho JFGP, Rumjanek VM, Rezende CE, Santos GA (2003) Propriedades químicas de um cambissolo cultivado com cana-de-açúcar, com preservação do palhiço e adição de vinhaça por longo tempo. Rev Bras Ciênc Solo 27:935–944

  17. Cayuela ML, Sinicco T, Mondini C (2009) Mineralization dynamics and biochemical properties during initial decomposition of plant and animal residues in soil. Appl Soil Ecol 41:118–127

  18. Cheng W, Coleman DC (1990) Effect of living roots on soil organic matter decomposition. Soil Biol Biochem 6:781–787

  19. Conteh A, Blair GJ, Rochester IJ (1998) Soil organic carbon fractions in a Vertisol under irrigated cotton production as affected by burning and incorporating cotton stubble. Aust J Soil Res 36:655–667

  20. Cookson WR, Beare MH, Wilson PE (1998) Effects of prior crop residue management on microbial properties and crop residue decomposition. Appl Soil Ecol 7:179–188

  21. Costa SM, Mazzola PG, Silva JCAR, Pahl R, Pessoa Jr. A, Costa SA (2013) Use of sugar cane straw as a source of cellulose for textile fiber production. Industrial Crops and Products 42(1):189–194

  22. Cunha EQ, Stone LF, Ferreira EPB, Didonet AD, Moreira JAA, Leandro WM (2011) Sistemas de preparo dosolo e culturas de cobertura na produção orgânica de feijão e Milho. II—Atributos biológicos do solo. Rev Bras Ciênc Solo 35:603–611

  23. Dorodnikov M, Kuzyakov Y, Fangmeier A, Wiesenberg GLB (2011) C and N in soil organic matter density fractions under elevated atmospheric CO2: turnover vs. stabilization. Soil Biol Biochem 43:579–589

  24. Duong TTT, Baumann K, Marschner P (2009) Frequent addition of wheat residue residues to soil enhances carbon mineralization rate. Soil Biol Biochem 41:1475–1482

  25. Fontana A, Pereira MG, Loss A, Cunha TJF, Salton JC (2006) Atributos de fertilidade e frações húmicas de um Latossolo Vermelho no Cerrado. Pesq Agrop Brasileira 41:847–853

  26. Franzluebbers K, Weaver RW, Juo ASR, Franzluebbers AJ (1994) Carbon and nitrogen mineralization from cowpea plant parts decomposing in moist and in repeatedly dried and wetted soil. Soil Biol Biochem 26:1379–1387

  27. Gassen DN, Gassen FR (1996) Plantio direto. Passo Fundo

  28. Giacomini SJ, Aita C, Hübner AP, Lunkes A, Guidini E, Amaral EB (2003) Liberação de fósforo e potássio durante a decomposição de resíduos culturais em plantio direto. Pesq Agrop Brasileira 38:1097–1104

  29. Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41

  30. Gonçalves JS, Neiva JNM, Oliveira Filho GS, Lôbo RNB (2007) Valor nutritivo de silagens de capim elefante (Pennisetum purpureum Shum) e Brachiaria decumbens contendo pedúnculo de caju (Annacardium occidentale L.) desidratado. Rev Ciênc Agron 38(2):204–209

  31. Gunnarsson S, Marstorp H, Dahlin AS, Witter E (2008) Influence of non-cellulose structural carbohydrate composition on plant material decomposition in soil. Biol Fert Soils 45:27–36

  32. Guilou CL, Angers DA, Leterme P, Menasseri-Aurby S (2011) Differential and successive effects of residue quality and soil mineral N on water-stable aggregation during crop residue decomposition. Soil Biol Biochem 43:1955–1960

  33. Hair JF (2007) Análise multivariada de dados. Bookman, Porto Alegre

  34. Heinz R, Garbiate MV, Neto ALV, Mota LHS, Correia AMP, Vitorino ACT (2011) Decomposição e liberação de nutrientes de resíduos culturais de crambe e nabo forrageiro. Revista Ciencia Rural 41:1549–1555

  35. Islam KR, Weil RR (1998) Microwave irradiation of soil for routine measurement of microbial biomass carbon. Biol Fert Soils 27:408–416

  36. Knicker H, González-Vila FJ, González-Vázquez R (2013) Biodegradability of organic matter in fire-affected mineral soils of Southern Spain. Soil Biol Biochem 56:31–39

  37. Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

  38. Piovesan P, Araújo LB, Deanddias CTS (2008) Validação cruzada com correção de autovalores e regressão isotônica nos modelos de efeitos principais aditivos e interação multiplicativa. Ciência Rural 39:1018–1023

  39. Embrapa—Empresa Brasileira de Pesquisa Agropecuária (2010) Sobre a Soja Safrinha. Available via DIALOG. https://www.embrapa.br/documents/1355202/1529289/Soja_Safrinha_Embrapa.pdf of subordinate document. Accessed 15 August 2014

  40. Embrapa—Empresa Brasileira de Pesquisa Agropecuária (1997) Manual de métodos de análise de solo. Rio de Janeiro

  41. Embrapa—Empresa Brasileira de Pesquisa Agropecuária (2014) Sistema Brasileiro de classificação de Solos. Embrapa Solos, Rio de Janeiro

  42. Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layer controlled by fresh carbon supply. Nature 408:277–280

  43. Kaiser K, Eusterhues K, Rumpel C, Guggenberger G, Knabner KI (2002) Stabilization of organic matter by soil minerals investigations of density and particle-size fractions from two acid forest soils. J Plant Nutr Soil Sci 165:451–459

  44. Kurihara CH, Venegas VHA, Neves JCL, Novais RF (2013) Acúmulo de matéria seca e nutriente em soja, como variável do potencial produtivo. Revista Ceres 60:690–698

  45. Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

  46. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836

  47. Luo Z, Hu C, Zhou J, Cen K (2006) Stability of mercury on three activated carbon sorbents. Fuel Process Technol 87:679–685

  48. MAPA—Ministério da Agricultura, Pecuária e Abastecimento (2014) Plantio direto. Available via DIALOG. http://www.agricultura.gov.br/desenvolvimento-sustentavel/plantio-direto of subordinate document. Accessed 15 August 2014

  49. Maciel CDG, Corrêa MR, Alves E, Negrisoli E, Velini ED, Rodrigues JD, Ono EO, Boaro CSF (2003) Influência do manejo da palha de capim-braquiária (Brachiaria decumbens) sobre o desenvolvimento inicial de soja (Glycine max) e amendoim-bravo (Euphorbia heterophylla). Planta daninha 21:365–373

  50. Maheri-Sis N, Abdollahi-Ziveh B, Salamatdoustnobar R, Ahmadzadeh A, Aghajanzadeh-Golshani A, Mohebbizadeh M (2011) Determining nutritive value of soybean straw for ruminants using nylon bags technique. Pak J Nutr 10(9):838–841

  51. Martens DA (2000) Management and crop residue influence soil aggregate stability. J Environ Qual 29:723–727

  52. Mazzilli SR, Kemanian AR, Ernst OR, Jackson RB, Piñeiro G (2014) Priming of soil organic carbon decomposition induced by corn compared to soybean crops. Soil Biol Biochem 75:273–281

  53. Meier EA, Thorburn PJ, Wegener MK, Basford KE (2006) The availability of nitrogen from sugarcane trash on contrasting soils in the wet tropics of North Queensland. Nutr Cycl Agroecosys 75:101–114

  54. Mendonça ES, Matos ES (2005) Matéria Orgânica do Solo: Métodos de Análises. D&M Gráfica e Editora Ltda, Ponte Nova

  55. Moritsuka N, Yanai J, Mori K, Kosaki T (2004) Biotic and abiotic processes of nitrogen immobilization the soil-residue interface. Soil Biol Biochem 36:1141–1148

  56. Neal L Jr (1969) Inhibition of nitrifying bacteria by grass and forb root extracts. Can J Botany 15:633–635

  57. Nunes UR, Andrade Júnior VC, Silva EB, Santos NF, Costa HAO, Ferreira CA (2006) Produção de palha de plantas de cobertura e rendimento do feijão em plantio direto. Pesq Agrop Brasileira 41:943–948

  58. Oliveira MW, Trivelin PCO, Penatti CP, Piccolo MC (1999) Decomposição e liberação de nutrientes da palha de cana-de-açúcar em campo. Pesq Agrop Brasileira 34:2359–2362

  59. Olmsted CE, Rice EL (1970) Relative effects of known plant inhibitors on species from first two stages of old-field succession. Southwest Nat 5:165–173

  60. Panosso AR, Marques J, Milori DMBP, Ferraudo AS, Barbieri DM, Pereira GT, La Scala N (2011) Soil CO2 emission and its relation to soil properties in sugarcane areas under Slash-and-burn and Green harvest. Soil Till Res 111:190–196

  61. Pereira ES, Queiroz AC, Paulino MF, Cecon PR, Valadares Filho SC, Miranda LF, Fernandes AM, Cabral LC (2000) Determinação das Frações Protéicas e de Carboidratos e Taxas de Degradação in Vitro da Cana-de-Açúcar, da Cama de Frango e do Farelo de Algodão. Rev Bras Zootec 29(6):1887–1893

  62. Reddy N, Yang Y (2009) Natural cellulose fibers from soybean straw. Bioresource Technol 100(1):3593–3598

  63. Rossi CQ, Pereira MG, Giacomo SG, Betta M, Polidoro JC (2011) Frações húmicas da matéria orgânica do solo cultivado com soja sobre palha de braquiária e sorgo. Bragantia 70:622–630

  64. Sanchez PA, Palm CA, Szott LT, Cuevas E, Lal R, Fownes JH, Hendrix P, Ikawa H, Jones S, Noordwijk M V, Uehara G (1989) Organic input management in tropical agroecosystems. In: Coleman DC, Oades JM, Uehara G (Eds.) Dynamics of soil organic matter in tropical ecosystems, Hawaii, pp 125-152

  65. Scala NL Jr, Lopes A, Spokas K, Bolonhezi D, Archer DW, Reicosky DC (2008) Short-term temporal changes of soil carbon losses after tillage described by a first-order decay model. Soil Till Res 99:108–118

  66. Santos EDG, Paulino MF, Queiroz DS, Valadares Filho SC, da Fonseca DM, Lana RP (2004) Avaliação de Pastagem Diferida de Brachiaria decumbens Stapf: 1. Características Químico-Bromatológicas da Forragem Durante a Seca. Revista Brasileira de Zootecnologia 33(1):203–213

  67. Siczek A, Lipiec J (2011) Soybean nodulation and nitrogen fixation in response to soil compaction and surface residue mulching. Soil Till Res 114:50–56

  68. Sneath PH, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. Freeman, San Francisco

  69. Stanford G, Frere MH, Shwaninger DH (1973) Temperature coefficient of soil nitrogen mineralization. Soil Sci 115:321–323

  70. Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. John Wiley & Sons, New York

  71. Swift RS (1996) Organic matter characterization. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Methods of soil analysis: chemical methods, part 3. Soil Science Society of America; American Society of Agronomy, Madison, pp 1011–1020

  72. Six J, Elliott ET, Paustian K (1999) Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci Soc Am J 63:1350–1358

  73. Six J, Frey SD, Thies RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

  74. Torres JLR, Pereira MG, Andrioli I, Polidoro JC, Fabian AJ (2005) Decomposição e liberação de nitrogênio de resíduos culturais de plantas de cobertura em um solo de cerrado. Revista Brasileira Ciência do Solo 29:609–618

  75. Trinsoutrot I, Recous S, Mary B, Nicolardot B (2000) C and N fluxes of decomposing 13C and 15N Brassica napus L.: effects of residue composition and N content. Soil Biol Biochem 32:1717–1730

  76. Urquiaga S, Bodey M, Oliveira OC, Lima E, Guimarrães DHVA (1991) Importância de não queimar a palha na cultura de cana-de-açúcar. Comunicado técnico da Empresa Nacional de Pesquisa Agropecuária – EMBRAPA 1:1–6

  77. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass-C. Soil Biol Biochem 19:703–707

  78. Wang WJ, Baldock JA, Dalal RC, Moody PW (2004) Decomposition of plant materials in relation to nitrogen availability and biochemistry determined by NMR and wet-chemical analysis. Soil Biol Biochem 36:2045–2058

  79. Yeomans J, Bremner JM (1988) A rapid and precise method four routine determination of organic carbon in soil. Commun Soil Sci Plant Anal 19:1467–1476

  80. Zavalloni C, Alberti G, Biasiol S, Delle Vedove G, Fornasier F, Liu J, Peressotti A (2011) Microbial mineralization of biochar and wheat residue mixture in soil: a short-term study. Appl Soil Ecol 50:45–51

Download references


The authors would like to thank the following Brazilian institutions for their financial support: Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ), and Fundação de Amparo a Pesquisa de São Paulo (FAPESP).

Author information

Correspondence to Risely Ferraz De Almeida.

Additional information

Responsible editor: Zucong Cai

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Almeida, R.F., Silveira, C.H., Mota, R.P. et al. For how long does the quality and quantity of residues in the soil affect the carbon compartments and CO2-C emissions?. J Soils Sediments 16, 2354–2364 (2016). https://doi.org/10.1007/s11368-016-1432-3

Download citation


  • Multivariate analysis
  • Residue
  • Soil carbon pools
  • Soil respiration