Advertisement

Journal of Soils and Sediments

, Volume 17, Issue 5, pp 1413–1426 | Cite as

Physiological and biochemical responses of Dolichos lablab L. to cadmium support its potential as a cadmium phytoremediator

  • Lucas A. Souza
  • Fernando A. Piotto
  • Manuella N. Dourado
  • Daiana Schmidt
  • Mônica R. Franco
  • Luis F. Boaretto
  • Tiago Tezotto
  • Renato R. Ferreira
  • Ricardo A. AzevedoEmail author
Phytoremediation of Polluted Soils: Recent Progress and Developments

Abstract

Purpose

This study aims to investigate the response of a high biomass producer non-hyperaccumulator legume plant species, Dolichos lablab L., to cadmium (Cd) stress for phytoremediation process.

Materials and methods

Three individual experiments were carried out to assess physiological and biochemical parameters to support the use of this plant species as a phytoremediator. The first experiment was carried out in Cd-contaminated soil while the second and third experiments were conducted in sand in which Cd was applied to study biochemical responses. Analysis of mineral nutrition, phytoremediation parameters, antioxidant response, and protein identification by gel-based proteomics were performed.

Results and discussion

Good tolerance to Cd under moderate level of contamination was observed. Mineral nutrition was little affected, and phytoremediation index was satisfactory. Additionally, biochemical responses based on antioxidant enzyme analysis were well responsive in roots, reflecting the capacity of Cd stress attenuation in this organ. A proteomic analysis revealed positive regulation of root proteins involved in carbohydrate, amino acids, nitrogen metabolism, and abiotic/biotic stress response, which together may contribute to create a scenario to overcome Cd-induced stress.

Conclusions

Based on the physiological and biochemical results, we concluded that D. lablab L. is suitable for phytoremediation/phytostabilization purposes.

Keywords

Antioxidant metabolism Heavy metal Oxidative stress Phytostabilization 

Notes

Acknowledgments

This work was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—grant no. 2009/54676-0), which also granted to L.A.S. (FAPESP Scholarship 2010/50167-0), M.N.D. (FAPESP Scholarship 2011/50368-9), and D.S. (FAPESP Scholarship 2011/21123-8) graduate scholarships. Thanks are also due to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—grant no. 477652/2010-7), which also granted to R.A.A. a research fellowship (CNPq no. 302540/2011-3)

References

  1. Adhikari T, Kumar A (2012) Phytoaccumulation and tolerance of Riccinus communis L. to nickel. Int J Phytorem 14:481–492CrossRefGoogle Scholar
  2. Ahsan N, Nakamura T, Komatsu S (2012) Differential responses of microsomal proteins and metabolites in two contrasting cadmium (Cd)-accumulating soybean cultivars under Cd stress. Amino Acids 42:317–327CrossRefGoogle Scholar
  3. Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344CrossRefGoogle Scholar
  4. Andrade SAL, Silveira APD, Jorge RA, Abreu MF (2008) Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. Int J Phytorem 10:1–14CrossRefGoogle Scholar
  5. Andrade SAL, Gratão PL, Azevedo RA, Silveira APD, Schiavinato MA, Mazzafera P (2010) Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environ Exp Bot 68:198–207CrossRefGoogle Scholar
  6. Andresen E, Küpper H (2013) Cadmium toxicity in plants. In: Sigel A, Sigel H, Sigel RKO (eds) Cadmium: from toxicity to essentiality—metal ions in life sciences 11. Springer, pp. 395–413Google Scholar
  7. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399CrossRefGoogle Scholar
  8. Arruda SCC, Barbosa HS, Azevedo RA, Arruda MAZ (2011) Two-dimensional difference gel electrophoresis applied for analytical proteomics: fundamentals and applications to the study of plant proteomics. Analyst 136:4119–4126CrossRefGoogle Scholar
  9. Arruda MAZ, Azevedo RA, Barbosa HS, Mataveli LRV, Oliveira SR, Arruda SCC, Gratão PL (2013) Comparative studies involving transgenic and non-transgenic soybean: what is going on? In: Board JE (ed) A comprehensive survey of international soybean research—genetics, physiology, agronomy and nitrogen relationships. Intech, Rijeka, Croatia, pp 583–613Google Scholar
  10. Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705CrossRefGoogle Scholar
  11. Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol Plant 104:280–292CrossRefGoogle Scholar
  12. Azevedo RA, Gratão PL, Monteiro CC, Carvalho RF (2012) What is new in the research on cadmium-induced stress in plants? Food Energ Sec 1:133–140CrossRefGoogle Scholar
  13. Basile A, Sorbo S, Cardi M, Lentini M, Castiglia D, Cianciullo P, Conte B, Loppi S, Esposito S (2015) Effects of heavy metals on ultrastructure and Hsp70 induction in Lemna minor L. exposed to water along the Sarno River, Italy. Ecotox Environ Safe 114:93–101CrossRefGoogle Scholar
  14. Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240CrossRefGoogle Scholar
  15. Beauchamp CH, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287CrossRefGoogle Scholar
  16. Bertoli AC, Cannata MG, Carvalho R, Bastos ARR, Freitas MP, Augusto AS (2012) Lycopersicon esculentum submitted to Cd-stressful conditions in nutrition solution: nutrient contents and translocation. Ecotox Environ Safe 86:176–181CrossRefGoogle Scholar
  17. Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120CrossRefGoogle Scholar
  18. Bierkens JGEA (2000) Applications and pitfalls of stress-proteins in biomonitoring. Toxicology 153:61–72CrossRefGoogle Scholar
  19. Bona E, Marsano F, Massa N, Cattaneo C, Cesaro P, Argese E, di Toppi LS, Cavaletto M, Berta G (2011) Proteomic analysis as a tool for investigating arsenic stress in Pteris vittata roots colonized or not by arbuscular mycorrhizal symbiosis. J Proteomics 74:1338–1350CrossRefGoogle Scholar
  20. Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  21. Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019CrossRefGoogle Scholar
  22. Cruz FJR, Castro GLS, Silva Junior DD, Festucci-Buselli RA, Pinheiro HA (2013) Exogenous glycine betaine modulates ascorbate peroxidase and catalase activities and prevent lipid peroxidation in mild water-stressed Carapa guianensis plants. Photosynthetica 51:102–108CrossRefGoogle Scholar
  23. D’Souza MR, Devaraj VR (2010) Biochemical responses of hyacinth bean (Lablab purpureus) to salinity stress. Acta Physiol Plant 32:341–353CrossRefGoogle Scholar
  24. de Souza LA, de Andrade SAL, de Souza SCR, Schiavinato MA (2012a) Arbuscular mycorrhiza confers Pb tolerance in Calopogonium mucunoides. Acta Physiol Plant 34:523–531CrossRefGoogle Scholar
  25. de Souza SCR, de Andrade SAL, de Souza LA, Schiavinato MA (2012b) Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage. J Environl Manag 110:299–307CrossRefGoogle Scholar
  26. Disla JMS, Gómez I, Pedreño JN, Jordán M (2014) The transfer of heavy metals to barley plants from soils amended with sewage sludge with different heavy metal burdens. J Soils Sedim 14:687–696CrossRefGoogle Scholar
  27. Dominguez DM, Garcia FC, Raya AC, Santiago RT (2010) Cadmium-induced oxidative stress and the response of the antioxidative defense system in Spartina densiflora. Physiol Plant 139:289–302Google Scholar
  28. Dourado MN, Martins PF, Quecine MC, Piotto FA, Souza LA, Franco MR, Tezotto T, Azevedo RA (2013) Burkholderia sp. SCMS54 reduces cadmium toxicity and promotes growth in tomato. Ann Appl Biol 163:494–507Google Scholar
  29. Dourado MN, Souza LA, Martins PF, Peters LP, Piotto FA, Azevedo RA (2014) Burkholderia sp. SCMS54 triggers a global stress defense in tomato enhancing cadmium tolerance. Water Air Soil Pollut 225:2159CrossRefGoogle Scholar
  30. Elobeid M, Goebel C, Feussner I, Polle A (2012) Cadmium interferes with auxin physiology and lignification in poplar. J Exp Bot 63:1413–1421CrossRefGoogle Scholar
  31. Farinati S, DalCorso G, Bona E, Corbella M, Lampis S, Cecconi D, Polati R, Berta G, Vallini G, Furini A (2009) Proteomic analysis of Arabidopsis halleri shoots in response to the heavy metals cadmium and zinc and rhizosphere microorganisms. Proteomics 9:4837–4850CrossRefGoogle Scholar
  32. Fidalgo F, Freitas R, Ferreira R, Pessoa A, Teixeira J (2011) Solanum nigrum L. antioxidant defence system isoenzymes are regulated transcriptionally and posttranslationally in Cd-induced stress. Environ Exp Bot 72:312–319CrossRefGoogle Scholar
  33. Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46CrossRefGoogle Scholar
  34. GE Healthcare (2004) 2-D electrophoresis: principles and methodsGoogle Scholar
  35. Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122CrossRefGoogle Scholar
  36. Gonçalves J, Tabaldi L, Cargnelutti D, Pereira L, Maldaner J, Becker A, Rossato L, Rauber R, Bagatini M, Bisognin D, Schetinger M, Nicoloso F (2009) Cadmium-induced oxidative stress in two potato cultivars. Biometals 22:779–792CrossRefGoogle Scholar
  37. Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494CrossRefGoogle Scholar
  38. Gratão PL, Monteiro CC, Antunes AM, Peres LEP, Azevedo RA (2008a) Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Ann Appl Biol 153:321–333CrossRefGoogle Scholar
  39. Gratão PL, Pompeu GB, Capaldi FR, Vitorello VA, Lea PJ, Azevedo RA (2008b) Antioxidant response of Nicotiana tabacum cv. bright yellow 2 cells to cadmium and nickel stress. Plant Cell Tiss Org Cult 94:73–83CrossRefGoogle Scholar
  40. Gratão PL, Monteiro CC, Carvalho RF, Tezotto T, Piotto FA, Peres LEP, Azevedo RA (2012) Biochemical dissection of diageotropica and never ripe tomato mutants to Cd-stressful conditions. Plant Physiol Biochem 56:79–96CrossRefGoogle Scholar
  41. Gratão PL, Monteiro CC, Tezotto T, Carvalho RF, Alves LR, Peters LP, Azevedo RA (2015) Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants. Biometals 28:803–816CrossRefGoogle Scholar
  42. Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266CrossRefGoogle Scholar
  43. He J, Qin J, Long L, Ma Y, Li H, Li K, Jiang X, Liu T, Polle A, Liang Z, Luo ZB (2011) Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus x canescens. Physiol Plant 143:50–63CrossRefGoogle Scholar
  44. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198CrossRefGoogle Scholar
  45. Hediji H, Djebali W, Cabasson C, Maucourt M, Baldet P, Bertrand A, Zoghlami LB, Deborde C, Moing A, Brouquisse R, Chaibi W, Gallusci P (2010) Effects of long-term cadmium exposure on growth and metabolomic profile of tomato plants. Ecotox Environ Safe 73:1965–1974CrossRefGoogle Scholar
  46. Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Calif Agric Exp Sta Bull 347Google Scholar
  47. Hradilova J, Rehulka P, Rehulkova H, Vrbova M, Griga M, Brzobohaty B (2010) Comparative analysis of proteomic changes in contrasting flax cultivars upon cadmium exposure. Electrophoresis 31:421–431CrossRefGoogle Scholar
  48. Huguet S, Bert V, Laboudigue A, Barthes V, Marie-Pierre I, Llorens I, Schat H, Sarret G (2012) Cd speciation and localization in the hyperaccumulator Arabidopsis halleri. Environ Exp Bot 82:54–65CrossRefGoogle Scholar
  49. Ingle R, Smith JAC, Sweetlove L (2005) Responses to nickel in the proteome of the hyperaccumulator plant Alyssum lesbiacum. Biometals 18:627–641CrossRefGoogle Scholar
  50. Jouili H, Bouazizi H, El Ferjani E (2011) Plant peroxidases: biomarkers of metallic stress. Acta Physiol Plant 33:2075–2082CrossRefGoogle Scholar
  51. Kabata-Pendias A, Pendias H (2001) Trace elements in soil and plants, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  52. Kim C, Meskauskiene R, Apel K, Laloi C (2008) No single way to understand singlet oxygen signalling in plants. Embo Rep 9:435–439CrossRefGoogle Scholar
  53. Konotop Y, Meszaros P, Spiess N, Mistrikova V, Pirselova B, Libantova J, Moravcikova J, Taran N, Hauptvogel P, Matusikova I (2012) Defense responses of soybean roots during exposure to cadmium, excess of nitrogen supply and combinations of these stressors. Mol Biol Rep 39:10077–10087CrossRefGoogle Scholar
  54. Kraus TE, McKersie BD, Fletcher RA (1995) Paclobutrazol-induced tolerance of wheat leaves to paraquat may involve increased antioxidant enzyme activity. J Plant Physiol 145:570–576CrossRefGoogle Scholar
  55. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  56. Lee J, Jiang W, Qiao YL, Cho YI, Woo MO, Chin JH, Kwon SW, Hong SS, Choi IY, Koh HJ (2011) Shotgun proteomic analysis for detecting differentially expressed proteins in the reduced culm number rice. Proteomics 11:455–468CrossRefGoogle Scholar
  57. Li Y, Zhang S, Jiang W, Liu D (2013) Cadmium accumulation, activities of antioxidant enzymes, and malondialdehyde (MDA) content in Pistia stratiotes L. Environ Sci Pollut Res 20:1117–1123CrossRefGoogle Scholar
  58. Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428CrossRefGoogle Scholar
  59. Lopes CA, Barbosa HS, Galazzi RM, Koolen HHF, Gozzo FC, Arruda MAZ (2015) Evaluation of proteome alterations induced by cadmium stress in sunflower (Helianthus annuus L.) cultures. Ecotox Environ Safe 119:170–177CrossRefGoogle Scholar
  60. López-Millán AF, Sagardoy R, Solanas M, Abadía A, Abadía J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot 65:376–385CrossRefGoogle Scholar
  61. Lovy L, Latt D, Sterckeman T (2013) Cadmium uptake and partitioning in the hyperaccumulator Noccaea caerulescens exposed to constant Cd concentrations throughout complete growth cycles. Plant Soil 362:345–354CrossRefGoogle Scholar
  62. Lübben S, Sauerbeck D (1991) The uptake and distribution of heavy metals by spring wheat. Water Air Soil Pollut 57–58:239–247CrossRefGoogle Scholar
  63. Lux A, Martinka M, Vaculík M, White PJ (2011) Root response to cadmium in the rizosphere: a review. J Exp Bot 62:21–37CrossRefGoogle Scholar
  64. Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258CrossRefGoogle Scholar
  65. Maksimović I, Kastori R, Krstić L, Luković J (2007) Steady presence of cadmium and nickel affects root anatomy, accumulation and distribution of essential ions in maize seedlings. Biol Plant 51:589–592CrossRefGoogle Scholar
  66. Matsuno H, Uritani I (1972) Physiological behavior of peroxidase isoenzymes in sweet potato root tissue injured by cutting or with black root. Plant Cell Physiol 13:1091–1101Google Scholar
  67. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410CrossRefGoogle Scholar
  68. Mittler R, Poulos TL (2007) Ascorbate peroxidase. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing Ltd, pp. 87–100Google Scholar
  69. Monteiro CC, Carvalho RF, Gratão PL, Carvalho G, Tezotto T, Medici LO, Peres LEP, Azevedo RA (2011) Biochemical responses of the ethylene-insensitive Never ripe tomato mutant subjected to cadmium and sodium stresses. Environ Exp Bot 71:306–320CrossRefGoogle Scholar
  70. Nadgorska-Socha A, Kafel A, Kandziora-Ciupa M, Gospodarek J, Zawisza-Raszka A (2013) Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on monometallic contaminated soil. Environ Sci Pollut Res 20:1124–1134CrossRefGoogle Scholar
  71. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-especific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880Google Scholar
  72. Opdenakker K, Remans T, Keunen E, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAPKinase transcript levels. Environ Exp Bot 83:53–61CrossRefGoogle Scholar
  73. Pereira LB, Mazzanti CMA, Cargnelutti D, Rossato LV, Gonçalves JF, Calgaroto N, Dressler V, Nicoloso FT, Federizzi LC, Morsch VM, Schetinger MRC (2011) Differential responses of oat genotypes: oxidative stress provoked by aluminum. Biometals 24:73–83Google Scholar
  74. Podazza G, Arias M, Prado FE (2012) Cadmium accumulation and strategies to avoid its toxicity in roots of the citrus rootstock Citrumelo. J Hazard Mater 215:83–89CrossRefGoogle Scholar
  75. Prasch CM, Sonnewald U (2015) Signaling events in plants: Stress factors in combination change the picture. Environ Exp Bot 114:4–14CrossRefGoogle Scholar
  76. Procópio SO, Santos JB, Silva AA, Pires FR, Ribeiro Júnior JI, Santos EA, Ferreira LR (2004) Seleção de plantas com potencial para fitorremediação de solos contaminados com o herbicida trifloxysulfuron sodium. Planta Daninha 22:315–322CrossRefGoogle Scholar
  77. Rahman MM, Azirun SM, Boyce AN (2013) Enhanced accumulation of copper and lead in Amaranth (Amaranthus paniculatus), Indian Mustard (Brassica juncea) and Sunflower (Helianthus annuus). PLoS One 8(5):e62941CrossRefGoogle Scholar
  78. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Phytoremediation of toxic metals: using plants to clean up the environment., pp 193–230Google Scholar
  79. Remans T, Opdenakker K, Guisez Y, Carleer R, Schat H, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to excess Zn reveals a Zn-specific oxidative stress signature. Environ Exp Bot 84:61–71CrossRefGoogle Scholar
  80. Rezvani M, Zaefarian F, Miransari M, Nematzadeh GA (2012) Uptake and translocation of cadmium and nutrients by Aeluropus littoralis. Arch Agron Soil Sci 58:1413–1425CrossRefGoogle Scholar
  81. Roychoudhury A, Basu S, Sengupta DN (2012) Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Physiol Plant 34:835–847CrossRefGoogle Scholar
  82. Safarzadeh S, Ronaghi A, Karimian N (2013) Effect of cadmium toxicity on micronutrient concentration, uptake and partitioning in seven rice cultivars. Arch Agron Soil Sci 59:231–245CrossRefGoogle Scholar
  83. Sánchez-Pardo B, Carpena RO, Zornoza P (2013) Cadmium in white lupin nodules: Impact on nitrogen and carbon metabolism. J Plant Physiol 170:265–271CrossRefGoogle Scholar
  84. Sharmin SA, Alam I, Kim KH, Kim YG, Kim PJ, Bahk JD, Lee BH (2012) Chromium-induced physiological and proteomic alterations in roots of Miscanthus sinensis. Plant Sci 187:113–126CrossRefGoogle Scholar
  85. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860CrossRefGoogle Scholar
  86. Siddiqui MH, Al-Whaibi MH, Sakran AM, Ali HM, Basalah MO, Faisal M, Alatar A, Al-Amri AA (2013) Calcium-induced amelioration of boron toxicity in radish. J Plant Growth Regul 32:61–71CrossRefGoogle Scholar
  87. Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van Laere A, Vangronsveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444CrossRefGoogle Scholar
  88. Smékalová V, Doskočilová A, Komis G, Šamaj J (2014) Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol Adv 32:2–11CrossRefGoogle Scholar
  89. Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithilbis (2-nitrobenzoic acid). Anal Biochem 175:408–413CrossRefGoogle Scholar
  90. Souza LA, Andrade SAL, Souza SCR, Schiavinato MA (2013a) Evaluation of mycorrhizal influence on the development and phytoremediation potential of Canavalia gladiata in Pb-contaminated soils. Int J Phytorem 15:465–476CrossRefGoogle Scholar
  91. Souza LA, Piotto FA, Nogueirol RC, Azevedo RA (2013b) Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents. Sci Agric 70:290–295CrossRefGoogle Scholar
  92. Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270CrossRefGoogle Scholar
  93. Tezotto T, Favarin JL, Azevedo RA, Alleoni LRF, Mazzafera P (2012) Coffee is highly tolerant to cadmium, nickel and zinc: plant and soil nutritional status, metal distribution and bean yield. Field Crop Res 125:25–34CrossRefGoogle Scholar
  94. Tuomainen MH, Nunan N, Lehesranta SJ, Tervahauta AI, Hassinen VH, Schat H, Koistinen KM, Auriola S, McNicol J, Karenlampi SO (2006) Multivariate analysis of protein profiles of metal hyperaccumulator Thlaspi caerulescens accessions. Proteomics 6:3696–3706CrossRefGoogle Scholar
  95. Vernay P, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68:1563–1575CrossRefGoogle Scholar
  96. Walliwalagedara C, Atkinson I, van Keulen H, Cutright T, Wei R (2010) Differential expression of proteins induced by lead in the dwarf sunflower Helianthus annuus. Phytochemistry 71:1460–1465CrossRefGoogle Scholar
  97. Wang Z, Zhang Y, Huang Z, Huang L (2008) Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress. Plant Soil 310:137–149CrossRefGoogle Scholar
  98. Wang Y, Hu H, Zhu LY, Li XX (2012) Response to nickel in the proteome of the metal accumulator plant Brassica juncea. J Plant Interact 7:230–237CrossRefGoogle Scholar
  99. Xu C, Xu Y, Huang B (2008) Protein extraction for two-dimensional gel electrophoresis of proteomic profiling in turfgrass. Crop Sci 48:1608–1614CrossRefGoogle Scholar
  100. Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729CrossRefGoogle Scholar
  101. Younis M (2010) Response of Lablab purpureus (L.) sweet/rhizobium symbiosis and growth to potassium supply under different water regimes. J Plant Nutr 33:1400–1409CrossRefGoogle Scholar
  102. Yu F, Liu K, Li M, Zhou Z, Deng H, Chen B (2013) Effects of cadmium on enzymatic and non-enzymatic antioxidative defences of rice (Oriza sativa L.). Int J Phytorem 15:513–521CrossRefGoogle Scholar
  103. Zancheta ACF, Abreu CA, Zambrosi FCB, Erismann NM, Lagôa AMMA (2015) Cadmium accumulation by jack-bean and sorghum in hydroponic culture. Int J Phytorem 17:298–303CrossRefGoogle Scholar
  104. Zhao FY, Liu W, Zhang SY (2009) Different responses of plant growth and antioxidant system to the combination of cadmium and heat stress in transgenic and non-transgenic rice. J Integr Plant Biol 51:942–950CrossRefGoogle Scholar
  105. Zhao L, Sun YL, Cui SX, Chen M, Yang HM, Liu HM, Chai TY, Huang F (2011) Cd-induced changes in leaf proteome of the hyperaccumulator plant Phytolacca americana. Chemosphere 85:56–66CrossRefGoogle Scholar
  106. Zhu Y, Bi D, Yuan L, Yin X (2012) Phytoremediation of cadmium and copper contaminated soils. In: Yin X, Yuan L (eds) Phytoremediation and Biofortification: two sides of one coin. Springer Briefs in Molecular Science. Springer, New York, NY, USA, pp 75–81CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lucas A. Souza
    • 2
    • 3
  • Fernando A. Piotto
    • 1
  • Manuella N. Dourado
    • 1
  • Daiana Schmidt
    • 1
  • Mônica R. Franco
    • 1
  • Luis F. Boaretto
    • 1
  • Tiago Tezotto
    • 4
  • Renato R. Ferreira
    • 5
  • Ricardo A. Azevedo
    • 1
    Email author
  1. 1.Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”Universidade de São Paulo-USPPiracicabaBrazil
  2. 2.UNICAMP/Instituto de Biologia - Depto. de Biologia VegetalCampinasBrazil
  3. 3.Instituto Federal Goiano, Rede Arco Norte/Polo de Inovação em Bioenergia e Grãos, Campus Rio VerdeRio VerdeBrazil
  4. 4.Centro Universitário da Fundação de Ensino Octávio Bastos, UnifeobSão João da Boa VistaBrazil
  5. 5.CENA, Universidade de São Paulo-USPPiracicabaBrazil

Personalised recommendations