Journal of Soils and Sediments

, Volume 16, Issue 3, pp 785–800 | Cite as

Phytotoxicity of natural soils using physiological and biochemical endpoints reveals confounding factors: can a weight of evidence tackle uncertainty?

  • Sara C. Antunes
  • Bruno B. Castro
  • Maria Celeste Dias
  • José Moutinho-Pereira
  • Carlos M. Correia
  • Maria T. Claro
  • Ana Gavina
  • Conceição Santos
  • Fernando Gonçalves
  • Glória Pinto
Soils, Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Research Article



Standard assays for phytotoxicity provide a reductionist view on the performance of plants under toxic stress. To address two of the most prominent issues in plant toxicity studies, our aims were (1) to assess how well physiological and biochemical parameters complement standard toxicological endpoints when testing natural soils and (2) to assess the suitability of three commonly used control soils as comparative references.

Material and methods

We compared the performance of Zea mays and Helianthus annuus in three control soils (artificial Organisation for Economic Co-operation and Development (OECD) soil, standard LUFA 2.2 soil, and turf-perlite) against three natural soils representing a gradient of contamination (from a deactivated uranium mine). Standard endpoints (emergence and biomass) were estimated, along with pigment content, photosynthetic parameters, cellular injury, and proline content.

Results and discussion

The toxicological profile of natural soils was highly dependent on the control soil used as reference; also, plant physiological performance was influenced by the soils’ properties. We discuss the need to interpret and combine multiple lines of evidence as a way to increase the degree of confidence one classifies soils based on their ecotoxicity, and this is where the integration of physiological and biochemical parameters bring added value.


When facing large variability in soil characteristics, it is best to collect and integrate as much information possible to strengthen conclusions about phytotoxicity of natural soils. Obviously, this refutes reductionist views and places the final conclusion in the hands of expert judgment.


Natural and standard soils Physiological performance Plant bioassays Standard protocols 



This work was supported by European Funds through COMPETE and by National Funds through the Portuguese Science Foundation (FCT) within project PEst-C/MAR/LA0017/2013 and UID/AMB/50017/2013. Maria Celeste Dias and Glória Pinto were supported by FCT by means of a post-doctoral grant (SFRH/BPD/100865/2014 and SFRH/BPD/101669/2014, respectively).


  1. Abrahams PW (2002) Soils: their implications to human health. Sci Total Environ 291(1–3):1–32CrossRefGoogle Scholar
  2. Ali S, Zeng F, Qiu L, Zhang G (2004) The effect of chromium and aluminum on growth, root morphology, photosynthetic parameters and transpiration of the two barley cultivars. Biol Plant 55(2):291–296CrossRefGoogle Scholar
  3. Amorim M, Römbke J, Scheffczyk A, Nogueira AJ, Soares AMVM (2005) Effects of different soil types on the Collembolans Folsomia candida and Hypogastrura assimilis using the herbicide phenmedipham. Arch Environ Contam Toxicol 49(3):343–52CrossRefGoogle Scholar
  4. An YJ, Kim YM, Kwon TI, Jeong SW (2004) Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Sci Total Environ 326:85–93CrossRefGoogle Scholar
  5. Antunes SC, Pereira R, Gonçalves F (2007) Acute and chronic toxicity of effluent water from an abandoned uranium mine. Arch Environ Contam Toxicol 53:207–213CrossRefGoogle Scholar
  6. Antunes SC, Castro BB, Pereira R, Gonçalves F (2008a) Contribution for tier 1 of the ecological risk assessment of Cunha Baixa uranium mine (Central Portugal): II. Soil ecotoxicological screening. Sci Total Environ 390(2–3):387–395CrossRefGoogle Scholar
  7. Antunes SC, Castro BB, Nunes B, Pereira R, Gonçalves F (2008b) In situ bioassay with Eisenia andrei to assess soil toxicity in an abandoned uranium mine. Ecotoxicol Environ Saf 71:620–631CrossRefGoogle Scholar
  8. Antunes SC, Pereira R, Marques SM, Castro BB, Gonçalves F (2011) Impaired microbial activity caused by metal pollution: a field study in a deactivated uranium mining area. Sci Total Environ 410:87–95CrossRefGoogle Scholar
  9. Antunes SC, Castro BB, Moreira C, Gonçalves F (2013) Community-level effects in edaphic fauna from an abandoned mining area: integration with chemical and toxicological lines of evidence. Ecotoxicol Environ Saf 88:65–71CrossRefGoogle Scholar
  10. Banks MK, Schultz KE (2005) Comparison of plants for germination toxicity tests in petroleum-contaminated soils. Water Air Soil Pollut 16(1–4):211–219CrossRefGoogle Scholar
  11. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207CrossRefGoogle Scholar
  12. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300Google Scholar
  13. Brain RA, Cedergreen N (2009) Biomarkers in aquatic plants: selection and utility. Rev Environ Contam Toxicol 198:49–109Google Scholar
  14. Breure T, Peijnenburg W (2003) Developments in soil protection in the Netherlands. J Soils Sediments 3(4):248–249CrossRefGoogle Scholar
  15. Caetano AL, Gonçalves F, Sousa JP, Cachada A, Pereira E, Duarte AC, Ferreira da Silva E, Pereira R (2012) Characterization and validation of a Portuguese natural reference soil to be used as substrate for ecotoxicological purposes. J Environ Monit 14:925–936CrossRefGoogle Scholar
  16. Chelinho S, Domene X, Campana P, Natal-da-Luz T, Scheffczyk A, Römbke J, Andrés P, Sousa JP (2011) Improving ecological risk assessment in the Mediterranean area: selection of reference soils and evaluating the influence of soil properties on avoidance and reproduction of two oligochaete species. Environ Toxicol Chem 30(5):1050–1058CrossRefGoogle Scholar
  17. Correia B, Pintó-Marijuan M, Neves L, Dias MC, Brossa R, Castro BB, Araújo C, Costa A, Chaves MM, Santos C, Pinto G (2014) Water stress and recovery in the performance of two Eucalyptus globulus clones: physiological and biochemical profiles. Physiol Plant 150(4):580–592CrossRefGoogle Scholar
  18. Elkahoui S, Hernández JA, Abdelly C, Ghrir R, Limam F (2005) Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Sci 168:607–613CrossRefGoogle Scholar
  19. Ernst WHO, Peterson PJ (1994) The role of biomarkers in environmental assessment (4). Terrestrial plants. Ecotoxicology 3(3):180–192CrossRefGoogle Scholar
  20. FAOUN (1984) Food and Agriculture Organization of the United Nations—physical and chemical methods of soil and water analysis. Soils Bull 10:1–275Google Scholar
  21. Frankenbach S, Scheffczyk A, Jänsch S, Römbke J (2014) Duration of the standard earthworm avoidance test: are 48 h necessary? Appl Soil Ecol 83:238–246CrossRefGoogle Scholar
  22. Gavina A, Antunes SC, Pinto G, Claro MT, Santos C, Gonçalves F, Pereira R (2013) Can physiological endpoints improve the sensitivity of assays with plants in the risk assessment of contaminated soils? PLoS ONE 8(4):e59748CrossRefGoogle Scholar
  23. Gawlik BM, Lamberty A, Pauwels J, Blum WE, Mentler A, Bussian B, Eklo O, Fox K, Kördel W, Hennecke D, Maurer T, Perrin-Ganier C, Pflugmacher J, Romero-Taboada E, Szabo G, Muntau H (2003) Certification of the European reference soil set (IRMM-443—EUROSOILS). Part I. Adsorption coefficients for atrazine, 2,4-D and lindane. Sci Total Environ 312(1–3):23–31CrossRefGoogle Scholar
  24. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930CrossRefGoogle Scholar
  25. Gomes SIL, Scott-Fordsmand JJ, Amorim MJB (2014) Profiling transcriptomic response of Enchytraeus albidus to Cu and Ni: comparison with Cd and Zn. Environ Pollut 186:75–82CrossRefGoogle Scholar
  26. Gong P, Wilke B, Fleischmann S (1999) Soil-based phytotoxicity of 2,4,6-trinitrotoluene (TNT) to terrestrial higher plants. Arch Environ Contam Toxicol 36(2):152–157CrossRefGoogle Scholar
  27. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466CrossRefGoogle Scholar
  28. Hirayma T, Shinozaky K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. The Plant Journal 61(6):1041–1052Google Scholar
  29. Hofman J, Hovorková I, Machát J (2009) Comparison and characterization of OECD artificial soils. In: Moser H, Römbke J (eds) Ecotoxicological characterization of waste: results and experiences from an European ring test, pp 223–229Google Scholar
  30. Hund-Rinke K, Achaz R, Römbke J, Warnecke D (2003) Avoidance test with Eisenia fetida as indicator for the habitat function of soils: results of a laboratory comparison test. J Soils Sediments 3(1):7–12CrossRefGoogle Scholar
  31. ISO (1995) Soil quality—determination of the effects of polluants on soil flora. Part 2: effect of chemicals on the emergence and growth of higher plants. ISO—The International Organization for Standardization, Geneve. ISO 11269–2:7Google Scholar
  32. ISO (2005) Soil quality—avoidance test for testing the quality of soils and the toxicity of chemicals—test with earthworms (Eisenia fetida). International Organization for Standardization, GenevaGoogle Scholar
  33. Kalsch W, Junker T, Römbke J (2006) A chronic plant test for the assessment of contaminated soils. Part 2: testing of contaminated soils. J Soils Sediments 6(2):92–101CrossRefGoogle Scholar
  34. Keurentjes JJB, Angenent GC, Dicke M, Dos Santos VAPM, Molenaar J, van der Putten WH, de Ruiter PC, Struik PC, Thomma BPHJ (2011) Redefining plant systems biology: from cell to ecosystem. Trends Plant Sci 16(4):183–190CrossRefGoogle Scholar
  35. Lagadic L, Caquet T, Ramade F (1994) The role of biomarkers in environmental assessment (5). Invertebrate populations and communities. Ecotoxicology 3(3):193–208CrossRefGoogle Scholar
  36. Lourenço J, Pereira R, Pinto F, Caetano T, Silva A, Carvalheiro T, Guimarães A, Gonçalves F, Paiva A, Mendo S (2013) Biomonitoring a human population inhabiting nearby a deactivated uranium mine. Toxicology 305:89–98CrossRefGoogle Scholar
  37. Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398CrossRefGoogle Scholar
  38. Marques SM, Antunes SC, Pissarra H, Pereira ML, Gonçalves F, Pereira R (2009) Histopathological changes and erythrocytic nuclear abnormalities in Iberian green frogs (Rana perezi Seoane) from a uranium mine pond. Aquat Toxicol 91(2):187–195CrossRefGoogle Scholar
  39. Monteiro MS, Santos C, Soares AMVM, Mann RM (2009) Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicol Environ Saf 72(3):811–818CrossRefGoogle Scholar
  40. Morgan JB, Connolly EL (2013) Plant-soil interactions: nutrient uptake. Nat Educ Knowl 4(8):2Google Scholar
  41. Munzuroglu O, Geckil H (2002) Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch Environ Contam Toxicol 43(2):203–213CrossRefGoogle Scholar
  42. Nedelkoska TV, Doran PM (2000) Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Miner Eng 13(5):549–561CrossRefGoogle Scholar
  43. Nunes B, Pinto G, Martins L, Gonçalves F, Antunes SC (2014) Biochemical and standard toxic effects of acetaminophen on the macrophyte species Lemna minor and Lemna gibba. Environ Sci Pollut Res 21:10815–10822Google Scholar
  44. OECD (1984) OECD Guideline for the testing of chemicals: 208 Terrestrial plants, growth test. Organization for Economic Co-operation and Development, France. Paris, FranceGoogle Scholar
  45. OECD (2004) OECD Guideline for the testing of chemicals: earthworm reproduction test (Eisenia fetida/Eisenia andrei). OECD/OCED no 222Google Scholar
  46. OECD (2006) Terrestrial plant test: seedling emergence and seedling growth test OECD/OCED no 208Google Scholar
  47. O'Halloran K (2006) Toxicological considerations of contaminants in the terrestrial environment for ecological risk assessment. Hum Ecol Risk Assess 12(1):74–83CrossRefGoogle Scholar
  48. Peakall DW (1992) Animal biomarkers as pollution indicators. Chapman & Hall, LondonCrossRefGoogle Scholar
  49. Pereira R, Antunes SC, Marques SM, Gonçalves F (2008) Contribution for tier I of the ecological risk assessment of Cunha Baixa uranium mine (Central Portugal). I. Soil chemical characterization. Sci Total Environ 390:377–386CrossRefGoogle Scholar
  50. Pereira R, Marques CR, Silva Ferreira MJ, Neves MFJV, Caetano AL, Antunes SC, Mendo S, Gonçalves F (2009) Phytotoxicity and genotoxicity of soils from an abandoned uranium mine area. Appl Soil Ecol 42:209–220CrossRefGoogle Scholar
  51. Pereira R, Barbosa S, Carvalho FP (2014) Uranium mining in Portugal: a review of the environmental legacies of the largest mines and environmental and human health impacts. Environ Geochem Health 36(2):285–301CrossRefGoogle Scholar
  52. Pike N (2011) Using false discovery rates for multiple comparisons in ecology and evolution. Methods Ecol Evol 2(3):278–282CrossRefGoogle Scholar
  53. Piršelová B, Kuna R, Libantová J, Moravčíková J, Matušíková I (2011) Biochemical and physiological comparison of heavy metal-triggered defense responses in the monocot maize and dicot soybean roots. Mol Biol Rep 38(5):3437–46CrossRefGoogle Scholar
  54. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, p 537CrossRefGoogle Scholar
  55. Römbke J, Jänsch S, Junker T, Pohl B, Scheffczyk A, Schallnaß H-J (2006) The effect of tributyltin-oxide on earthworms, springtails, and plants in artificial and natural soils. Arch Environ Contam Toxicol 52:525–534CrossRefGoogle Scholar
  56. Rutgers M, Faber JH, Postma J, Eijsackers H (2000) Site-specific ecological risks: a basic approach to function-specific assessment of soil pollution. Reports of the Programme on Integrated Soil Research. P. B. S. Research, WageningenGoogle Scholar
  57. Sanchez-Hernandez JC (2011) Pesticide biomarkers in terrestrial invertebrates, pesticides in the modern world—pests control and pesticides exposure and toxicity assessment, Dr. Margarita Stoytcheva (Ed.), ISBN: 978-953-307-457-3, InTech, Available from:
  58. Santos C (2004) Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci Hortic 103(1):93–99CrossRefGoogle Scholar
  59. Scheffczyk A, Frankenbach S, Jänsch S, Römbke J (2014) Comparison of the effects of zinc nitrate-tetrahydrate and tributyltin-oxide on the reproduction and avoidance behavior of the earthworm Eisenia andrei in laboratory tests using nine soils. Appl Soil Ecol 83:253–257CrossRefGoogle Scholar
  60. Seiter S, Horwat WR (2004) Strategies for managing soil organic matter to supply plant nutrients. In: Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC PressGoogle Scholar
  61. Shao H, Huang X, Zhang Y, Zhang C (2013) Main alkaloids of Peganum harmala L. and their different effects on dicot and monocot crops. Molecules 18:2623–2634CrossRefGoogle Scholar
  62. Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–354CrossRefGoogle Scholar
  63. SPAC (2000) Soil and plant analysis council—handbook of reference methods. CRC Press, Boca RatonGoogle Scholar
  64. Spurgeon DJ, Hopkin SP (1996) Effects of variations of the organic matter content and pH of soils on the availability and toxicity of zinc to the earthworm Eisenia fetida. Pedologia 40:80–96Google Scholar
  65. Sunahara GI, Robidoux PY, Gong P, Lachance B, Rocheleau S, Dodard SG, Sarrazin M, Hawari J, Thiboutout S, Ampleman G, Renoux AY (2000) Laboratory and field approaches to characterize the soil ecotoxicology of polynitro explosives. In: Greenberg BM, Hull RN, Roberts MH, Gensemer RW (eds) Environmental toxicology and risk assessment: science, policy and standardization—implications for environmental decisions. American Society for Testing and Materials, West Conshoshocken, pp 293–312Google Scholar
  66. Van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:47–150Google Scholar
  67. Van Straalen NM (2002) Assessment of soil contamination—a functional perspective. Biodegradation 13(1):41–52CrossRefGoogle Scholar
  68. Von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387CrossRefGoogle Scholar
  69. Wang X-F, Zhou Q-X (2005) Ecotoxicological effects of cadmium on three ornamental plants. Chemosphere 60:16–21CrossRefGoogle Scholar
  70. Weeks JM, Comber SDW (2005) Ecological risk sssessment of contaminated soil. Mineral Mag 69(5):601–613CrossRefGoogle Scholar
  71. Weeks JM, Sorokin N, Johnson I, Whitehouse P, Ashton D, Spurgeon D, Hankard P, Svendsen C, Hart A (2004) Biological test methods for assessing contaminated land, stage 2—a demonstration of the use of a framework for the ecological risk assessment of land contamination. Environmental Agency Science Report P5-069/TR1Google Scholar
  72. Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50(6):775–780CrossRefGoogle Scholar
  73. Yu X-Z, Gu J-D, Huang S-Z (2007) Hexavalent chromium induced stress and metabolic responses in hybrid willows. Ecotoxicology 16:299–309CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sara C. Antunes
    • 1
    • 2
  • Bruno B. Castro
    • 2
    • 3
  • Maria Celeste Dias
    • 4
  • José Moutinho-Pereira
    • 5
  • Carlos M. Correia
    • 5
  • Maria T. Claro
    • 3
  • Ana Gavina
    • 1
    • 6
  • Conceição Santos
    • 1
    • 7
  • Fernando Gonçalves
    • 2
    • 3
  • Glória Pinto
    • 2
    • 3
  1. 1.Departamento de Biologia da Faculdade de Ciências da Universidade do PortoPortoPortugal
  2. 2.Centro de Estudos do Ambiente e do Mar (CESAM)Universidade de AveiroAveiroPortugal
  3. 3.Departamento de BiologiaUniversidade de AveiroAveiroPortugal
  4. 4.Centro de Ecologia Funcional (CEF), Departamento de Ciências da VidaFaculdade de Ciências e Tecnologia da Universidade de CoimbraCoimbraPortugal
  5. 5.Centro de Investigação e de Tecnologias Agroambientais e Biológicas (CITAB), Department Biologia e AmbienteUniversidade de Trás-os-Montes e Alto DouroVila RealPortugal
  6. 6.Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR)PortoPortugal
  7. 7.GreenUP, CITAB-UPFaculdade de Ciências da Universidade do PortoPortoPortugal

Personalised recommendations