Journal of Soils and Sediments

, Volume 17, Issue 5, pp 1514–1526 | Cite as

Origin and spatial distribution of metals in urban soils

  • Andrés Rodríguez-Seijo
  • María Luisa Andrade
  • Flora A. Vega
Phytoremediation of Polluted Soils: Recent Progress and Developments

Abstract

Purpose

This study assessed soils from 36 parks and gardens (Vigo City, NW of Spain) where there are different degrees of traffic intensity and activity.

Materials and methods

The soils were characterised, and the content of Ba, Ca, Cr, Cu, Fe, Mg, Mn, Na, Ni, Pb, Si, Sr and Zn was analysed. Further assessment determined the geoaccumulation index, enrichment factor and the contamination degree by metals with adverse effects on human health and environmental quality.

Results and discussion

The results reveal the existence of a moderate degree of contamination by Ba, Pb and Cu, which contribute the most to soil contamination due to the influence of industrial areas and main transport routes. Correlation and cluster analyses suggest that the metals included in the study have three possible origins: “natural” (Na and Si), “mixed” (two groups with different source intensity: Ca and Sr and Cr, Fe, Mg, Mn and Ni) and two possible “urban” sources: traffic (Cu, Pb, Zn) and mixed (Ba).

Conclusions

None of the soils can be classified as strongly contaminated but more than 61 % of the moderate contamination degree determined in the studied soils is explained by the Ba, Cu and Pb contents.

Keywords

Enrichment factor Geoaccumulation Pollution Metals Sources Urban soil 

Supplementary material

11368_2015_1304_MOESM1_ESM.pdf (389 kb)
ESM 1(PDF 389 kb)

References

  1. Acevedo-Figueroa D, Jiménez BD, Rodríguez-Sierra CJ (2006) Trace metals in sediments of two estuarine lagoons from Puerto Rico. Environ Pollut 141:336–342CrossRefGoogle Scholar
  2. Ajmone-Marsan F, Biasioli M (2010) Trace elements in soils of urban areas. Water Air Soil Pollut 213:121–143CrossRefGoogle Scholar
  3. Azpurua MA, Ramos KD (2010) A comparison of spatial interpolation methods for estimation of average electromagnetic field magnitude. Prog Electromagn Res M 14:135–145CrossRefGoogle Scholar
  4. Biasioli M, Barberis R, Ajmone-Marsan A (2006) The influence of a large city on some soil properties and metals content. Sci Total Environ 356:154–164CrossRefGoogle Scholar
  5. Biasioli M, Grcman H, Kralj T, Madrid F, Díaz-Barrientos E, Ajmone-Marsan F (2007) Potentially toxic elements contamination in urban soils: a comparison of three European cities. J Environ Qual 36:70–79CrossRefGoogle Scholar
  6. Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney RS (eds) Method of soil analysis: part 2. Chemical and microbiological properties, vol Agronomy monographs no. 9, 2nd edn. American Society of Agronomy and Soil Science Society of America, Madison, pp 595–624)Google Scholar
  7. Buat-Menard P, Chesselet R (1979) Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet Sci Lett 42:399–411CrossRefGoogle Scholar
  8. Cal-Prieto MJ, Carlosena A, Andrade JM, Martínez ML, Muniategui S, López-Mahía P, Prada D (2001) Antimony as a tracer of the anthropogenic influence on soils and estuarine sediments. Water, Air, and Soil Pollut 129:333–348CrossRefGoogle Scholar
  9. Carr R, Zhang C, Moles N, Harder M (2008) Identification and mapping of heavy metal pollution in soils of a sports ground in Galway City, Ireland, using a portable XRF analyser and GIS. Environ Geochem Health 30:45–52CrossRefGoogle Scholar
  10. Chen H, Lu X, Li LY, Gao T, Chang Y (2014) Metal contamination in campus dust of Xi’an, China: a study based on multivariate statistics and spatial distribution. Sci Total Environ 484:27–35CrossRefGoogle Scholar
  11. Craul PJ (1992) Urban soil in landscape design. Wiley, New York, 396 p Google Scholar
  12. Covelli S, Fontolan G (1997) Application of a normalization procedure in determining regional geochemical baselines. Environ Geol 30:34–45CrossRefGoogle Scholar
  13. Golubiewski NE (2006) Urbanization increases grassland carbon pools: effects of landscaping in Colorado’s Front Range. Ecol Appl 16:555–71CrossRefGoogle Scholar
  14. Daskalakis KD, O’Connor TP (1995) Normalization and elemental sediment contamination in the coastal United States. Environ Sci Technol 29(2):470–477CrossRefGoogle Scholar
  15. De Kimpe CR, Morel JL (2000) Urban soil management: a growing concern. Soil Sci 165:31–40CrossRefGoogle Scholar
  16. De Miguel E, Llamas JF, Chacón E, Berg T, Larssen S, Røyset O, Vadset M (1997) Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead. Atmos Environ 31:2733–2740CrossRefGoogle Scholar
  17. De Miguel E, Iribarren I, Chacón E, Ordoñez A, Charlesworth S (2007) Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 66:505–513CrossRefGoogle Scholar
  18. Eriksson CP, Holmgren P (1996) Estimating stone and boulder contents in forest soils—evaluating the potential of surface penetration methods. Catena 28:121–134CrossRefGoogle Scholar
  19. Fernández–Espinosa AJ, Ternero-Rodríguez M (2004) Study of traffic pollution by metals in Seville (Spain) by physical and chemical speciation methods. Anal Bioanal Chem 379:684–699Google Scholar
  20. Gallego JLR, Ordóñez A, Loredo J (2002) Investigation of trace element sources from an industrialized area (Avilés, northern Spain) using multivariate statistical methods. Environ Int 27:589–596CrossRefGoogle Scholar
  21. Guillén MT, Delgado J, Albanese S, Nieto LA, De Vivo B (2012) Heavy metals fractionation and multivariate statistical techniques to evaluate the environmental risk in soils of Huelva Township (SW Iberian Peninsula). J Geochem Explor 119–120:32–43CrossRefGoogle Scholar
  22. Hakanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001CrossRefGoogle Scholar
  23. Hendershot WH, Duquette M (1986) A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Sci Soc Am J 50:605–608CrossRefGoogle Scholar
  24. Instituto Geográfico Nacional de España. (2014). Base Cartográfica Numérica 1:25.000 (BCN25), Base Topográfica Nacional 1:25.000 (BTN25). Cedido por © Instituto Geográfico Nacional de España. https://www.cnig.es/ Accessed 04 April 2014
  25. Kabata-Pendias A (2010) Trace elements in soils and plants, 4th edn. CRC, New YorkCrossRefGoogle Scholar
  26. Karim Z, Qureshi BA, Mumtaz M, Qureshi S (2014) Heavy metal content in urban soils as an indicator of anthropogenic and natural influences on landscape of Karachi—a multivariate spatio-temporal analysis. Ecol Indic 42:20–31CrossRefGoogle Scholar
  27. Lee CS-L, Li X, Shi W, Cheung SC-N, Thornton I (2006) Metal contamination in urban, suburban, and country park soils of Hong Kong: a study based on GIS and multivariate statistics. Sci Total Environ 356:45–61CrossRefGoogle Scholar
  28. Li Z-G, Zhang G-S, Liu Y, Wan K-Y, Zhang R-H, Chen F (2013) Soil nutrient assessment for urban ecosystems in Hubei, China. PLoS One 8(9):e75856CrossRefGoogle Scholar
  29. Lorenz K, Lal R (2008) Biogeochemical C and N cycles in urban soils. Environ Int 35:1–8CrossRefGoogle Scholar
  30. Loska K, Wiechulla D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30:159–165CrossRefGoogle Scholar
  31. Macías F, Calvo de Anta R (2009) Niveles Genéricos de Referencia de Metales Pesados y otros elementos de traza en suelos de Galicia. Xunta de Galicia 2009. Santiago de Compostela, Spain (in Spanish)Google Scholar
  32. Massas I, Kalivas D, Ehaliotis C, Gasparatos D (2013) Total and available heavy metal concentrations in soils of the Thriassio plain (Greece) and assessment of soil pollution indexes. Environ Monit Assess 185:6751–6766CrossRefGoogle Scholar
  33. Metreveli G, Frimmel FH (2007) Influence of Na-bentonite colloids on the transport of heavy metals in porous media. In: Frimmel FH, Frank F, Hans-Curt F (eds) Colloid transport in porous media. Springer, Berlin, pp 29–53CrossRefGoogle Scholar
  34. Minguillón MC, Cirach M, Hoek G, Brunekreef B, Tsai M, de Hoogh K et al (2014) Spatial variability of trace elements and sources for improved exposure assessment in Barcelona. Atmos Environ 89:268–281CrossRefGoogle Scholar
  35. Monaci F, Bargagli R (1997) Barium and other trace metals as indicators of vehicle emissions. Water Air Soil Pollut 100:89–98CrossRefGoogle Scholar
  36. Müller G (1979) Schwermetalle in den sedimenten des Rheins-Veränderungen seit 1971. Umschau 79(24):778–783 (in German) Google Scholar
  37. Oliva SR, Fernández-Espinosa AJ (2007) Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Microchem J 86:131–139CrossRefGoogle Scholar
  38. Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney RS (eds) Method of soil analysis: part 2. Chemical and microbiological properties. Agronomy monographs no. 9, 2nd edn. American Society of Agronomy and Soil Science Society of America, Madison, pp 403–430Google Scholar
  39. Picket STA, Cadenasso ML, Grove JM, Nilon CH, Boone CG, Groffman PM et al (2011) Urban ecological systems: scientific foundations and a decade of progress. J Environ Manage 92:331–362CrossRefGoogle Scholar
  40. Pouyat RV, Yesilonis ID, Russell-Anelli J, Neerchal NK (2007) Soil chemical and physical properties that differentiate urban land-use and cover types. Soil Sci Soc Am J 71:1010–1019CrossRefGoogle Scholar
  41. Puskás I, Farsang A (2009) Diagnostic indicators for characterizing urban soils of Szeged, Hungary. Geoderma 148:267–281CrossRefGoogle Scholar
  42. QGIS Development Team (2014) QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org Accessed 22 January 2014Google Scholar
  43. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org Accessed 21 January 2014
  44. Rodríguez-Salazar MT, Morton-Bermea O, Hernández-Álvarez E, Lozano R, Tapia-Cruz V (2011) The study of metal contamination in urban topsoils of Mexico City using GIS. Environ Earth Sci 62:899–905CrossRefGoogle Scholar
  45. Rodríguez-Seijo A, Arenas-Lago AML, Vega FA (2015) Identifying sources of Pb pollution in urban soils by means of MC-ICP-MS and TOF-SIMS. Environ Sci Pollut Res 22:7859–7872CrossRefGoogle Scholar
  46. Ruiz-Cortés E, Reinoso R, Díaz-Barrientos E, Madrid L (2005) Concentrations of potentially toxic metals in urban soils of Seville: relationship with different land uses. Environ Geochem Health 27:465–474CrossRefGoogle Scholar
  47. Rydin Y, Bleahu A, Davies M, Dávila JD, Friel S, De Grandis G et al (2012) Shaping cities for health: complexity and the planning of urban environments in the 21st century. Lancet 379:2079–2108CrossRefGoogle Scholar
  48. Saeedi M, Li LY, Salmanzaeh M (2012) Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. J Hazard Mater 227–228:9–17CrossRefGoogle Scholar
  49. Santacatalina M, Yubero M, Mantilla E, Carratalá A (2012) Relevance of the economic crisis in chemical PM10 changes in a semi-arid industrial environment. Environ Monit Assess 184:6827–6844CrossRefGoogle Scholar
  50. Shi G, Chen Z, Xu S, Zhang J, Wang L, Bi C, Teng J (2008) Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ Pollut 156(2):251–260CrossRefGoogle Scholar
  51. Slavik R, Julinová M, Labudíková M (2012) Screening of the spatial distribution of risk metals in topsoil from an industrial complex. Ecol Chem Eng S 19:259–272Google Scholar
  52. Srinivasa Gowd S, Ramakrishna Reddy M, Govil PK (2010) Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. J Hazard Mater 174:113–121CrossRefGoogle Scholar
  53. Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39:611–627CrossRefGoogle Scholar
  54. Szolnoki Z, Farsang A, Puskás I (2013) Cumulative impacts of human activities on urban garden soils: origin and accumulation of metals. Environ Pollut 177:106–115CrossRefGoogle Scholar
  55. Walkey A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 34:29–38CrossRefGoogle Scholar
  56. Xia X, Zhao X, Lai Y, Dong H (2013) Levels and distribution of total nitrogen and total phosphorous in urban soils of Beijing, China. Environ Earth Sci 69:1571–1577CrossRefGoogle Scholar
  57. Yang L, Li Y, Peng K, Wu S (2014) Nutrients and heavy metals in urban soils under different green space types in Anji, China. Catena 115:39–46CrossRefGoogle Scholar
  58. Wei B, Jiang F, Li X, Mu S (2010) Heavy metal induced ecological risk in the city of Urumqi, NW China. Environ Monit Assess 160:33–45CrossRefGoogle Scholar
  59. Zechmeister HG, Hohenwallner D, Riss A, Hanus-Illnar A (2005) Estimation of element deposition derived from road traffic sources by using mosses. Environ Pollut 138:238–249CrossRefGoogle Scholar
  60. Zhang C (2006) Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environ Pollut 142:501–511CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andrés Rodríguez-Seijo
    • 1
  • María Luisa Andrade
    • 1
  • Flora A. Vega
    • 1
  1. 1.Department of Plant Biology and Soil ScienceUniversidade de VigoVigoSpain

Personalised recommendations