Advertisement

Journal of Soils and Sediments

, Volume 15, Issue 11, pp 2334–2346 | Cite as

Quantifying soil erosion and sediment yield in a catchment in southern Brazil and implications for land conservation

  • Elizeu Jonas Didoné
  • Jean Paolo Gomes Minella Email author
  • Gustavo Henrique Merten
Sediments, Sec 3 • Hillslope and River Basin Sediment Dynamics • Research Article

Abstract

Purpose

Although agriculture represents about 30 % of Brazil’s GDP, there are few data at the catchment scale on land use, soil management, hydrology, and water quality.

Materials and methods

This study aimed to investigate the connections between current soil management practices in the southern Brazilian Plateau and their impacts on soil erosion, sediment yield, and streamflow. The monitoring was performed in a rural catchment with significant evidence of soil erosion and surface runoff despite widespread use of no-till. Streamflow (Q) and suspended sediment concentration (SSC) were measured over 2 years (2011 and 2012).

Results and discussion

The study shows that elevated gross erosion values in the catchment are associated with areas of potentially high surface runoff and low soil infiltration, possibly caused by inadequate soil management practices and excessive soil compaction. It was also noted that a large area in the catchment had higher soil loss rates than the limits considered acceptable for both the region and the tillage system.

Conclusions

Results indicate that there are significant environmental problems associated with surface runoff and sediment yield under the no-till system of soil conservation as currently practiced in this catchment.

Keywords

Catchment Modeling Monitoring No-tillage system Sediment yield Southern Brazil 

Notes

Acknowledgments

The authors acknowledge the financial support granted by FAPERGS, CAPES, and CNPq, and the community of the Conceição River catchment who contributed to the development of this project. The authors also wish to thank Patricia Oliveira and Elena Metcalf for their help with this manuscript.

References

  1. Bagarello V, Di Piazza GV, Ferro V, Giordano G (2008) Predicting unit plot soil loss in Sicily, south Italy. Hydrol Process 22:586–595CrossRefGoogle Scholar
  2. Barros CAP, Minella JPG, Dalbianco L, Ramon R (2014) Description of hydrological and erosion processes applying the LISEM model in a rural catchment in southern Brazil. J Soils Sediments 14:1298–1310Google Scholar
  3. Basic F, Kisic I, Mesic M, Nestroy O, Butorac A (2004) Tillage and crop management effects on soil erosion in central Croatia. Soil Tillage Res 78:197–206Google Scholar
  4. Brasil (2005) Conselho Nacional de Meio Ambiente. Resolução n° 357 de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e da outras providências. Available in: http://www.mma.gov.br
  5. Cassol EA, Martins D, Eltz FLF, Lima VS, Bueno AC (2007) Erosividade e padrões hidrológicos das chuvas de Ijuí (RS) no período de 1963 a 1993. Rev Bras Agromet 3:220–231Google Scholar
  6. Castro NMR, Auzet AV, Chevallier P, Leprun JC (1999) Land use change effects on runoff and erosion from plot to catchment scale on the basaltic plateau of southern Brazil. Hydrol Process 13:1621–1628CrossRefGoogle Scholar
  7. Cogo NP, Levien R, Schwarz RA (2003) Perdas de solo e água por erosão hídrica influenciada por métodos de preparo, classes de declive e níveis de fertilidade do solo. Rev Bras Cienc Solo 27:743–753Google Scholar
  8. de Vente J, Poesen J, Arabkhedri M, Verstraeten G (2007) The sediment delivery problem revisited. Prog Phys Geogr 31:155–178CrossRefGoogle Scholar
  9. de Vente J, Poesen J, Verstraeten G, Govers G, Vanmaercke M, Van Rompaey A, Arabkhedri M, Boix-Fayos C (2013) Predicting soil erosion and sediment yield at regional scales: where do we stand? Earth-Sci Rev 127:16–29CrossRefGoogle Scholar
  10. Denardin JE, Faganello A, Santi A (2008) Falhas na implementação do sistema plantio direto levam a degradação do solo. Rev Plantio Direto 18(108):33–34, http://www.agencia.cnptia.embrapa.br/Repositorio/v.+34000g9h1zwye02wx5ok00taf50auyora6.pdf
  11. Denardin JE, Faganelo A, Santi A (2009) Falhas na implementação do sistema plantio direto: Problemas têm acontecido e são resultantes do descaso com a adoção plena do complexo de processos tecnológicos que compõem o sistema de plantio direto. Revista A Lavoura, Rio de Janeiro, Brazil: SNA 112(671):20–22Google Scholar
  12. Derpsch R, Friedrich T (2009) Global overview of conservation agriculture adoption. Proceedings, Lead Papers, 4th World Congress on Conservation Agriculture, 4–7 February 2009, New Delhi, India, pp 429–438. http://webarchive.iiasa.ac.at/Admin/PUB/Documents/CP-80-010.pdf
  13. Didoné EJ, Minella JPG, Reichert JM, Merten GH, Dalbianco L, Barrros CAP, Ramon R (2014) Impact of no-tillage agricultural systems on sediment yield in two large catchments in southern Brazil. J Soils Sediments 14:1287–1297Google Scholar
  14. Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA (2006) Centro Nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos. 2.ed. Rio de Janeiro, p 306Google Scholar
  15. Foster GR, Lane LJ, Nowlin JD, Laflen JM, Young RA (1980) A model to estimate sediment yield from field-sized areas: development of model. In: Knisel WG (ed) CREAMS—a field-scale model for chemicals, runoff and erosion from agricultural management systems. USDA Cons Res Report No. 26, USDA-SEA, pp 36–64. http://webarchive.iiasa.ac.at/Admin/PUB/Documents/CP-80-010.pdf
  16. Fernandez C (2001) Predicting Erosion and Sediment Yield using GIS: Application to the Lawyers Creek Watershed. M.S. thesis. Washington State University, p 100Google Scholar
  17. Gubiani PI, Reichert JM, Reinert DJ (2013) Indicadores hídrico-mecânicos de compactação do solo e crescimento de plantas. Rev Bras Cienc Solo 37:1–10. doi: 10.1590/S0100-06832013000100001
  18. Horowitz AJ (2003) An evaluation of sediment rating curves for estimating suspended sediment concentrations for subsequent flux calculations. Hydrol Process 17:3389–3409. doi: 10.1002/hyp.1299 Google Scholar
  19. Horowitz AJ, Clarke RT, Merten GH (2015) The effects of sample scheduling and sample numbers on estimates of the annual fluxes of suspended sediment in fluvial systems. Hydrol Process 29(4):531–543CrossRefGoogle Scholar
  20. Kaiser DR, Reinert DJ, Reichert JM, Streck CA, Pellegrini A (2010) Nitrate and ammonium in soil solution in tobacco management systems. Rev Bras Cienc Solo 34:379–387CrossRefGoogle Scholar
  21. Kinnell PIA (2010) Event soil loss, runoff and the Universal Soil Loss Equation family of models: a review. J Hydrol 385:384–397CrossRefGoogle Scholar
  22. Knapen A, Poesen J, Govers G, Gyssels G, Nachtergaele J (2007) Resistance of soils to concentrated flow erosion: a review. Earth-Sci Rev 80:75–109CrossRefGoogle Scholar
  23. Lal R (1978) Research for soil and water conservation in Brazil. Anais do II Encontro Nacional de Pesquisa sobre Conservação de Solo. Passo Fundo, RS, pp 469–471. http://www.bdpa.cnptia.embrapa.br/busca (in Portuguese)
  24. Lee G, Yu W, Jung K (2013) Catchment-scale soil erosion and sediment yield simulation using a spatially distributed erosion model. Environ Earth Sci 70:33–47CrossRefGoogle Scholar
  25. Lima JEFW, Lopes WTA, Silva EM, Vieira MR (2004) Diagnóstico do Fluxo de Sedimentos em Suspensão na Bacia do Rio Piquiri in anais do VI Encontro Nacional de Engenharia de Sedimentos, Vitória, BrazilGoogle Scholar
  26. Lopes WTA, Lima JEFW, Vieira MR, Dias SF (2004) Diagnóstico do Fluxo de Sedimentos em Suspensão na Bacia do Rio Ivaí - Estado do Paraná in anais do VI Encontro Nacional de Engenharia de Sedimentos, Vitória, BrazilGoogle Scholar
  27. Lu H, Moran CJ, Prosser IP (2006) Modelling sediment delivery ratio over the Murray darling Basin. Environ Model Softw 21:1297–1308Google Scholar
  28. Maner S (1958) Factors affecting sediment delivery rates in the red hills physiographic area. Trans Am Geophys 39:669–675Google Scholar
  29. Merten GH, Caviglione JH, Ciacomini DC, Rufino RL, Medeiros G, Saintraint D, Ribas GC, Dedecek R (1995) El uso del SIG y del modelo USLE para determinar mapas de erosion potencial y actual em la microcuenca piloto de Agua Grande y Corrego Pensamento, Mambore, Brazil, Parana. FAO, Santiago do Chile. (GCP/RLA/107) JPN-Documento de Campo 6. http://agris.fao.org/agris-search/search.do?recordID=VE2007400925
  30. Merten GH, Horowitz AJ, Clarke RT, Minella JPG, Pickbrenner K, Pinto MC (2006) Considerações sobre a utilização da curva chave de sedimentos para determinação de fluxo de sedimentos. In: Merten GH et al (eds) Sedimentos: o desafio da multidisciplinaridade. ABRH, Porto Alegre, pp 83–94, http://www.lume.ufrgs.br/handle/10183/1305
  31. Merten GH, Capel PD, Minella JPG (2013) Effects of suspended sediment concentration and grain size on three optical turbidity sensors. Progress in erosion and sedimentation in Latin America. J Soils Sediments 14:1235–1241CrossRefGoogle Scholar
  32. Minella JPG, Merten GH, Ruhoff AL (2010) Use of spatial representation to calculate the topographic factor in the Revised Universal Soil Loss Equation in watersheds. Rev Bras Cienc Solo 34:1455–1462CrossRefGoogle Scholar
  33. Minella JPG, Walling DE, Merten GH (2014) Establishing a sediment budget for a small agricultural catchment in southern Brazil, to support the development of effective sediment management strategies. J Hydrol 519:2189–2201CrossRefGoogle Scholar
  34. Moore ID, Burch GJ (1986) Modelling erosion and deposition: topographic effects. Trans Am Soc Agric Eng 29:1624–1630CrossRefGoogle Scholar
  35. Moreno-de las Heras M, Nicolau JM, Merino-Martín L, Wilcox BP (2010) Plot-scale effects on runoff and erosion along a slope degradation gradient. Water Resour Res 46:W04503. doi: 10.1029/2009WR007875
  36. Newcombe CP, Jensen JO (1996) Channel suspended sediment and fisheries: a synthesis for quantitative assessment of risk and impact. N Am J Fish Manag 16:693–727CrossRefGoogle Scholar
  37. Okoro BC, Ibearugbulem OH, Agunwamba JC (2013) Gully erosion control along NWORIE River in Owerri, Imo State—a deterministic model approach. Int J Mod Eng Res 3:1774–1782Google Scholar
  38. Park SD, Lee KS, Kim GH, Shin SS, Chae KS, Cho JW, Kim MK, Kwag TB, Hong SC (2006) An estimation plan of the parameters for the soil erosion model considering regional characteristic. Nat Inst Disaster Prev 11:1660080-000017-01Google Scholar
  39. Renard KG, Yoder DC, Lightle DT, Dabney SM (2011) Universal Soil Loss Equation and revised Universal Soil Loss Equation. In: Morgan RPC, Nearing MA (eds) Handbook of erosion modelling. Blackwell Publishing Ltd, Cambridge, 416 pp. http://www.tucson.ars.ag.gov/unit/publications/PDFfiles/2122.pdf Google Scholar
  40. Renfro GW (1975) Use of erosion equations and sediment delivery ratios for predicting sediment yield, in present and prospective technology for predicting sediment yield and sources. Washington, USDA, p 33–45. (USDA ARSS-40)Google Scholar
  41. Roehl J (1962) Sediment source areas, delivery ratios, and influencing morphological factors. Int Assoc Sci Hydrol Publ 59:202–213Google Scholar
  42. Roloff G, Denardin JE (1994) Estimativa simplificada da erodibilidade do solo. In: Anais da Reunião Brasileira de Manejo e Conservação do Solo e da Água, Florianópolis, 1994. Sociedade Brasileira de Ciência do Solo, pp 150–151. http://www.scielo.br/scielo.php?script=sci_nlinks&ref=000083&pid=S0100-0683199700030001500028&lng=en
  43. Sasal MC, Castiglioni MG, Wilson MG (2010) Effect of crop sequences on soil properties and runoff on natural-rainfall erosion plots under no tillage. Soil Tillage Res 108:24–29CrossRefGoogle Scholar
  44. Slaymaker O (2006) Towards the identification of scaling relations in drainage basin sediment budgets. Geomorphology 80:8–19CrossRefGoogle Scholar
  45. Suzuki LEAS, Reichert JM, Reinert DJ (2013) Degree of compactness, soil physical properties and yield of soybean in six soils under no-tillage. Soil Res 51:1–11CrossRefGoogle Scholar
  46. Tiecher T, Minella JPG, Miguel P, Alvarez JWR, Pellegrini A, Capoane V, Ciotti LH, Schaefer GL, Rheinheimer DS (2014) Contribuição das fontes de sedimentos em uma bacia hidrográfica agrícola sob plantio direto. Rev Bras Cienc Solo 38:639–649CrossRefGoogle Scholar
  47. USDA-NRCS (1979) Sediment sources, yields, and delivery ratios. National engineering handbook, section 3 - Sedimentation, USDA, Washington DC, USA, 120 pp. http://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=17512.wba
  48. USDA-NRCS (1983) Sediment sources, yields, and delivery ratios. Chapter 6 in National. Engineering Handbook, Section 3, Sedimentation. U.S. Department Agriculture, U.S. Government Printing Office. Washington, D.C. Natural Resources Conservation Service formerly Soil Conservation Service (SCS), 6.2–6.19Google Scholar
  49. Vanoni VA (1975) Sedimentation engineering. Manuals and reports on engineering practice 54, ASCE, USA. 745 pp. http://trove.nla.gov.au/version/12717203
  50. Walling DE (1983) The sediment delivery problem. J Hydrol 65:209–237CrossRefGoogle Scholar
  51. Walling DE, Collins AL (2008) The catchment sediment budget as a management tool. Environ Sci Pol 11:136–143CrossRefGoogle Scholar
  52. Williams JR (1977) Sediment yield prediction with universal equation using runoff energy factor. In: Present and Prospective Technology for Predicting Sediment Yield and Sources, USDA-ARS-S-40, U.S Department of Agriculture, Washington, DC, pp 244–252Google Scholar
  53. Williams R, Berndt HD (1972) Sediment yield computed with universal equation. J Hydrau Div, ASCE 98 (HY12):2087–2098Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Elizeu Jonas Didoné
    • 1
  • Jean Paolo Gomes Minella
    • 1
    Email author
  • Gustavo Henrique Merten
    • 2
  1. 1.Department of SoilsFederal University of Santa MariaSanta MariaBrazil
  2. 2.Large Lakes ObservatoryUniversity of MinnesotaDuluthUSA

Personalised recommendations