Journal of Soils and Sediments

, Volume 15, Issue 2, pp 347–364 | Cite as

Sediment provenance, soil development, and carbon content in fluvial and manmade terraces at Koiliaris River Critical Zone Observatory

  • Daniel Moraetis
  • Nikolaos V. Paranychianakis
  • Nikolaos P. Nikolaidis
  • Steve A. Banwart
  • Svetla Rousseva
  • Milena Kercheva
  • Martin Nenov
  • Toma Shishkov
  • Peter de Ruiter
  • Jaap Bloem
  • W. E. H. Blum
  • G. J. Lair
  • Pauline van Gaans
  • Marc Verheul



The purpose of this study was the investigation of sediment provenance and soil formation processes within a Mediterranean watershed (Koiliaris CZO in Greece) with particular emphasis on natural and manmade terraces.

Material and methods

Five sites (K1–K5) were excavated and analyzed for their pedology (profile description), geochemistry [including rare earth elements (REEs) and other trace elements], texture, and mineralogy along with chronological analysis (optical luminescence dating). The selected sites have the common characteristic of being flat terraces while the sites differed with regard to bedrock lithology, elevation, and land use.

Results and discussion

Three characteristic processes of soil genesis were identified: (1) sediments transportation from outcrops of metamorphic rocks and sedimentation at the fluvial sites (K1–K2), (2) in situ soil development in manmade terraces (K3, K4), and (3) strong eolian input and/or material transported by gravity from upslope at the mountainous site (K5). REE patterns verified the soil genesis processes while they revealed also soil development processes such as (a) calcite deposition (K1), (b) clay illuviation and strong weathering (K4), and (c) possibly fast oxidation/precipitation processes (K3). Carbon sequestration throughout the soil profile was high at manmade terraces at higher elevation compared to fluvial environments due to both climatic effects and possibly intensive anthropogenic impact.


Soils at Koiliaris CZO were rather young soils with limited evolution. The different soil age, land use, and climatic effect induced various soil genesis and soil development processes. The manmade terraces at higher elevation have much higher carbon sequestration compared to the anthropogenic impacted fluvial areas.


Carbon content Land use Mediterranean watershed Soil development 



The extensive sampling and analyses obtained in this study were financially supported from the European Commission FP 7 Collaborative Project “Soil Transformations in European Catchments” (SoilTrEC) (Grant Agreement no. 244118).

Supplementary material

11368_2014_1030_MOESM1_ESM.doc (6.8 mb)
ESM 1 (DOC 6917 kb)
11368_2014_1030_MOESM2_ESM.doc (93 kb)
ESM 2 (DOC 93 kb)
11368_2014_1030_MOESM3_ESM.doc (592 kb)
ESM 3 (DOC 592 kb)
11368_2014_1030_MOESM4_ESM.doc (102 kb)
ESM 4 (DOC 102 kb)
11368_2014_1030_MOESM5_ESM.doc (84 kb)
ESM 5 (DOC 83 kb)
11368_2014_1030_MOESM6_ESM.doc (40 kb)
ESM 6 (DOC 40 kb)
11368_2014_1030_MOESM7_ESM.doc (80 kb)
ESM 7 (DOC 79 kb)
11368_2014_1030_MOESM8_ESM.doc (42 kb)
ESM 8 (DOC 41 kb)
11368_2014_1030_MOESM9_ESM.doc (44 kb)
ESM 9 (DOC 43 kb)
11368_2014_1030_MOESM10_ESM.doc (40 kb)
ESM 10 (DOC 40 kb)
11368_2014_1030_MOESM11_ESM.doc (55 kb)
ESM 11 (DOC 55 kb)


  1. Anderson SP, Bales RC, Duff CJ (2008) Critical zone observatories: building a network to advance interdisciplinary study of earth surface processes. Mineral Mag 72:7–10CrossRefGoogle Scholar
  2. Arianostou M (2001) Landscape changes in Mediterranean ecosystems of Greece: implications for fire and biodiversity issues. J Mediterr Ecol 2:165–178Google Scholar
  3. Aubert D, Stille P, Probst A (2001) REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochim Cosmochim Acta 65:387–406CrossRefGoogle Scholar
  4. Bachmann J, Guggenberger G, Baumgartl T, Ellerbrock RH, Urbanek E, Goebel M-O, Kaiser K, Horn R, Fischer WR (2008) Physical carbon-sequestration mechanisms under special consideration of soil wettability. J Plant Nutr Soil Sc 171:14–26CrossRefGoogle Scholar
  5. Banwart S (2011) Save our soils. Nature 474:152–151CrossRefGoogle Scholar
  6. Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exper Bot 56:1761–1778CrossRefGoogle Scholar
  7. Baumann A, Best G, Swosdz W, Wachendorf H (1976) The nappe pile of eastern Crete. Tectonophysics 30:T33–T40CrossRefGoogle Scholar
  8. Bayon G, Dennielou B, Etoubleau J, Ponzevera E, Toucanne S, Bermell S (2012) Intensifying weathering and land use in Iron Age Central Africa. Science 335:1219–1222CrossRefGoogle Scholar
  9. Brantley SL, Goldhaber MB, Ragnarsdottir KV (2007) Crossing disciplines and scales to understand the critical zone. Elements 3:307–314CrossRefGoogle Scholar
  10. Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22CrossRefGoogle Scholar
  11. Casana J (2008) Mediterranean valleys revisited: linking soil erosion, land use and climate variability in the northern Levant. Geomorphology 101:429–442CrossRefGoogle Scholar
  12. Charitopoulos E, Sarris A (2009) Documenting Venetian and Ottoman landscape in Crete: settlement patterns, road network and productive areas in Rethymnon inland. 14th International Congress “Cultural Heritage and New Technologies” ViennaGoogle Scholar
  13. Compton JS, White RA, Smith M (2003) Rare earth element behavior in soils and salt pan sediments of a semi-arid granitic terrain in the Western Cape, South Africa. Chem Geol 201:239–255CrossRefGoogle Scholar
  14. Coppin F, Berger G, Bauer A, Castet S, Loubet M (2002) Sorption of lanthanides on smectite and kaolinite. Chem Geol 182:57–68CrossRefGoogle Scholar
  15. Davidovich U, Porat N, Gadot Y, Avni Y, Lipschits O (2012) Archaeological investigations and OSL dating of terraces at Ramat Rahel, Israel. J Field Archaeol 37:192–208CrossRefGoogle Scholar
  16. Dornsiepen UF, Manutsoglu E, Mertmann D (2001) Permian–Triassic palaeogeography of the external Hellenides. Palaeogeogr Palaeocl 172:327–338CrossRefGoogle Scholar
  17. Dotterweich M (2013) The history of human-induced soil erosion: geomorphic legacies, early descriptions and research, and the development of soil conservation—a global synopsis. Geomorphology 201:1–34CrossRefGoogle Scholar
  18. Eger A, Almond PC, Condron LM (2011) Pedogenesis, soil mass balance, phosphorus dynamics and vegetation communities across a Holocene soil chronosequence in a super-humid climate, South Westland, New Zealand. Geoderma 163:185–196CrossRefGoogle Scholar
  19. Elderfield H, Greaves MJ (1982) The rare earth elements distribution in seawater. Nature 296:214–219CrossRefGoogle Scholar
  20. FAO (2006) World reference base for soil resources, World Soil Resources Reports No. 103, 2nd edn. Food and Agriculture Organization of the United Nations, FAO, RomeGoogle Scholar
  21. Fedoroff N (1997) Clay illuviation in Red Mediterranean soils. Catena 28:171–189CrossRefGoogle Scholar
  22. Francke A, Wagner B, Leng MJ, Rethemeyer J (2012) A Late Glacial to Holocene record of environmental change from Lake Dojran (Macedonia, Greece). Clim Past Discuss 8:5743–5785CrossRefGoogle Scholar
  23. Gromet LP, Dymek RF, Haskin LA, Korotev RL (1984) The “North American shale composite”: its compilation, major and trace element characteristics. Geochim Cosmochim Ac 48:2469–2482CrossRefGoogle Scholar
  24. Grove AT, Rackham O (1993) Threatened landscapes in the Mediterranean: examples from Crete. Landscape Urban Plan 24:279–292CrossRefGoogle Scholar
  25. Imai Ν, Terashima S, Itoh S, Ando Α (1998) Compilation of analytical data for five GSJ geochemical reference samples: the “Instrumental Analysis Series”. Geostandard Newslett 23:223–250CrossRefGoogle Scholar
  26. Johannesson KH, Zhou X, Guo C, Stetzenbach KJ, Hodge VF (2000) Origin of rare earth element signatures in groundwaters of circumneutral pH from southern Nevada and eastern California, USA. Chem Geol 164:239–257CrossRefGoogle Scholar
  27. Kalderon-Asael B, Erel Y, Sandler A, Dayan U (2009) Mineralogical and chemical characterization of suspended atmospheric particles over the east Mediterranean based on synoptic-scale circulation patterns. Atmos Environ 43:3963–3970CrossRefGoogle Scholar
  28. Kéfi S, Rietkerk M, Alados CL, Pueyo Y, Papanastasis VP, ElAich A, Ruiter PC (2007) Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449:213–217CrossRefGoogle Scholar
  29. Kizos T, Koulouri M (2006) Agricultural landscape dynamics in the Mediterranean: Lesvos (Greece) case study using evidence from the last three centuries. Environ Sci Policy 9:330–342CrossRefGoogle Scholar
  30. Kourgialas NN, Karatzas GP, Nikolaidis NP (2010) An integrated framework for the hydrologic simulation of a complex geomorphological river basin. J Hydrol 381:308–321CrossRefGoogle Scholar
  31. Kourgialas NN, Karatzas GP, Nikolaidis NP (2012) Development of a thresholds approach for real-time flash flood prediction in complex geomorphological river basins. Hydrol Process 26:1478–1494CrossRefGoogle Scholar
  32. Lair GJ, Zehetner F, Hrachowitz M, Franz N, Maringer FJ, Gerzabek MH (2009) Dating of soil layers in a young floodplain using iron oxide crystallinity. Quartenary Geochronology 4:260–266CrossRefGoogle Scholar
  33. Laveuf C, Cornu S (2009) A review on the potentiality of Rare Earth Elements to trace pedogenetic processes. Geoderma 154:1–12CrossRefGoogle Scholar
  34. Laveuf C, Cornu S, Juillot F (2008) Rare earth elements as tracers of pedogenic processes. C R Geosci 340:523–532CrossRefGoogle Scholar
  35. Laveuf C, Cornu S, Guilherme LRG, Guerin A, Juillot F (2012) The impact of redox conditions on the rare earth element signature of redoximorphic features in a soil sequence developed from limestone. Geoderma 170:25–38CrossRefGoogle Scholar
  36. Le Roy EL (1971). Times of feast, times of famine: a history of climate since the year 1000. Barbara Bray. Doubleday, Garden City, NYGoogle Scholar
  37. Leybourne MI, Johannesson KH (2008) Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe–Mn oxyhydroxides: fractionation, speciation, and controls over REE + Y patterns in the surface environment. Geochim Cosmochim Acta 72:5962–5983CrossRefGoogle Scholar
  38. Lomax J, Fuchs M, Preusser F, Fiebig M (2012) Luminescence based loess chronostratigraphy of the Upper Palaeolithic site Krems–Wachtberg. Austria Quatern Int. doi: 10.1016/j.quaint.2012.10.037 Google Scholar
  39. Long-Jiang M, Duo-Wen M, Jing-Hong Y, Chen-Xi S (2009) Geochemistry of trace and rare earth elements in red soils from the Dongting lake area and its environmental significance. Pedosphere 19:615–622CrossRefGoogle Scholar
  40. Ma Y-J, Huo R-K, Liu C-Q (2002) Speciation and fractionation of rare earth elements in a lateritic profile from southern China: identification of the carriers of Ce anomalies. Proceedings of the Goldschmidt Conference, Davos, SwitzerlandGoogle Scholar
  41. Macklin MG, Tooth S, Brewer PA, Noble PL, Duller GAT (2010) Holocene flooding and river development in a Mediterranean steepland catchment: the Anapodaris Gorge, south central Crete, Greece. Glob Planet Chang 70:35–52CrossRefGoogle Scholar
  42. Marini JC, Chauvel C, Maury RC (2005) Hf isotope compositions of northern Luzon arc lavas suggest involvement of pelagic sediments in their source. Contrib Mineral Petrol 149:216–232CrossRefGoogle Scholar
  43. McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin BR and McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Rev Mineral 21:169–200Google Scholar
  44. Miao L, Xu R, Ma Y, Zhu Z, Wang J, Cai R, Chen Y (2008) Geochemistry and biogeochemistry of rare earth elements in a surface environment (soil and plant) in South China. Environ Geol 56:225–235CrossRefGoogle Scholar
  45. Millennium Ecosystem Assessment (MEA) (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DCGoogle Scholar
  46. Montgomery DJ (2010) 2020 Visions. Nature 463:26–32CrossRefGoogle Scholar
  47. Moraetis D, Efstathiou D, Stamati FE, Tzoraki Ο, Nikolaidis NP, Schnoor JL, Vozinakis K (2010) High-frequency monitoring for the identification of hydrological and bio-geochemical processes in a Mediterranean river basin. J Hydrol 389:127–136CrossRefGoogle Scholar
  48. Mouslopoulou V, Moraetis D, Fassoulas C (2011) Identifying past earthquakes on carbonate faults: advances and limitations of the ‘Rare Earth Element’ method based on analysis of the Spili Fault, Crete, Greece. Earth Planet Sci Lett 309:45–55CrossRefGoogle Scholar
  49. Muhs DR, Budahn J, Avila A, Skipp G, Freeman J, de Patterson A (2010) The role of African dust in the formation of Quaternary soils on Mallorca, Spain and implications for the genesis of Red Mediterranean soils. Quat Sci Rev 29:2518–2543CrossRefGoogle Scholar
  50. Murray RW, Buchholtz MR, Brink T, Brumsack HJ, Gerlach DC, Russ GP (1991) Rare earth elements in Japan Sea sediments and diagenetic behavior of Ce/Ce*: results from ODP Leg 127. Geochim Cosmochim Acta 55:2453–2466CrossRefGoogle Scholar
  51. Nihlén T, Mattsson OJ, Rapp A, Gagaoudaki C, Kornaros G, Papageorgiou J (1995) Monitoring of Sahara dust fallout on Crete and its contribution to soil formation. Tellus 47B:365–374CrossRefGoogle Scholar
  52. Papanikolaou D, Vassilakis E (2010) Thrust faults and extensional detachment faults in Cretan tectono-stratigraphy: implications for Middle Miocene extension. Tectonophysics 488:233–247CrossRefGoogle Scholar
  53. Pope R, Wilkinson K, Skourtsos E, Triantaphyllou M, Ferrier G (2008) Clarifying stages of alluvium fan evolution along the Sfakian piedmont, southern Crete: new evidence from analysis of post-incisive soils and OSL dating. Geomorphology 94:206–225CrossRefGoogle Scholar
  54. Raymond PA, Cole JJ (2003) Increase in the export of alkalinity from North America’s largest river. Science 301:88–91CrossRefGoogle Scholar
  55. Scarciglia F, Tuccimei P, Andrea Vacca A, Barca D, Pulice I, Salzano R, Soligo M (2011) Soil genesis, morphodynamic processes and chronological implications in two soil transects of SE Sardinia, Italy: traditional pedological study coupled with laser ablation ICP-MS and radionuclide analyses. Quatern Int 233:40–52CrossRefGoogle Scholar
  56. Sholkovitz ER, Schneider DL (1991) Cerium redox cycles and rare earth elements in the Sargasso Sea. Geochim Cosmochim Ac 55:2737–2743CrossRefGoogle Scholar
  57. Siart C, Hecht S, Holzhauer I, Altherr R, Meyer HP, Schukraft G, Eitel B, Bubenzer O, Panagiotopoulos D (2010) Karst depressions as geoarchaeological archives: the palaeoenvironmental reconstruction of Zominthos (Central Crete) based on geophysical prospection, mineralogical investigations and GIS. Quatern Int 216:75–92CrossRefGoogle Scholar
  58. Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103CrossRefGoogle Scholar
  59. Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176CrossRefGoogle Scholar
  60. Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till Res 79:7–31CrossRefGoogle Scholar
  61. Soil Survey Staff (2004) Soil Survey Laboratory Methods Manual. Soil Survey Investigations Rep. 42. USDA–NRCS, Washington, DCGoogle Scholar
  62. Solleiro-Rebolledo E, Sycheva S, Sedov S, McClung de Tapia E, Rivera-Uria Y, Salcido-Berkovich C, Kuznetsova A (2011) Fluvial processes and paleopedogenesis in the Teotihuacan Valley, México: responses to late Quaternary environmental changes. Quatern Int 233:40–52CrossRefGoogle Scholar
  63. Stallsmith BA (2007) One colony, two mother cities: Cretan agriculture under Venetian and Ottoman rule, JSTORGoogle Scholar
  64. Stamati FE, Nikolaidis NP, Venieri D, Psillakis Ε, Kalogerakis Ν (2011) Dissolved organic nitrogen as an indicator of livestock impacts on soil biochemical quality. Appl Geochem 26:S340–S343CrossRefGoogle Scholar
  65. Thomas CW (1993) Sources of rare earth elements in Appin Group limestones, Dalradian, north east Scotland. Miner Petrol 49:27–44CrossRefGoogle Scholar
  66. UNEP (2012) Emerging issues in our global environment. UNOP Nairobi, ISO 10041:2004, 19–31Google Scholar
  67. Wagner B, Lotter AF, Nowaczyk N, Reed JM, Schwalb A, Sulpizio R, Valsecchi V, Wessels M, Zanchetta G (2009) A 40,000-year record of environmental change from ancient Lake Ohrid (Albania and Macedonia). J Paleolimnol 41:407–430CrossRefGoogle Scholar
  68. Wan Y, Liu C (2005) Study on adsorption of rare earth elements by kaolinite. J Rare Earth 23:377–381Google Scholar
  69. Wu G, Zhang X, Zhang C, Gao S, Li Z, Wang F, Wang W (2010) Concentration and composition of dust particles in surface snow at Urumqi Glacier, No. 1, Eastern Tien Shan. Glob Planet Chang 74:34–42CrossRefGoogle Scholar
  70. Xing B, Dudas MJ (1993) Trace and rare earth element content of white clay soils of the Three River Plain, Heilongjiang Province. P R China Geoderma 58:181–199CrossRefGoogle Scholar
  71. Zacharias N, Bassiakos Y, Hayden B, Theodorakopoulos K, Michael CT (2009) Luminescence dating of deltaic deposits from eastern Crete Greece. Geoarcheological implications. Geomorphology 109:46–53CrossRefGoogle Scholar
  72. Zhaoliang S, Congqiang L, Guilin H, Zhongliang W, Zhaoshou Z, Cheng Y (2006) Enrichment and release of rare earth elements during weathering of sedimentary rocks in Wujiang Catchments, SW China. J Rare Earth 24:491–496CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daniel Moraetis
    • 1
  • Nikolaos V. Paranychianakis
    • 2
  • Nikolaos P. Nikolaidis
    • 2
  • Steve A. Banwart
    • 3
  • Svetla Rousseva
    • 4
  • Milena Kercheva
    • 4
  • Martin Nenov
    • 4
  • Toma Shishkov
    • 4
  • Peter de Ruiter
    • 5
  • Jaap Bloem
    • 5
  • W. E. H. Blum
    • 6
  • G. J. Lair
    • 6
  • Pauline van Gaans
    • 7
  • Marc Verheul
    • 7
  1. 1.College of Science, Earth Science DepartmentSultan Qaboos UniversityMuscatOman
  2. 2.School of Environmental EngineeringTechnical University of CreteChaniaGreece
  3. 3.The University of SheffieldSheffieldUK
  4. 4.Agrotechnology and Plant Protection “N. Poushkarov”Institute of Soil ScienceSofiaBulgaria
  5. 5.Wageningen University and Research CentreAlterraThe Netherlands
  6. 6.Institute of Soil Research, University of Natural Resources and Life Sciences (BOKU)ViennaAustria
  7. 7.Deltares, Soil and Groundwater Systems.DelftThe Netherlands

Personalised recommendations