Journal of Soils and Sediments

, Volume 15, Issue 2, pp 282–291 | Cite as

Evaluation of methods for quantifying organic carbon in mangrove soils from semi-arid region

  • Gabriel N. Nóbrega
  • Tiago O. Ferreira
  • Adriana G. Artur
  • Eduardo S. de Mendonça
  • Raimundo A. de O. Leão
  • Adunias S. Teixeira
  • Xosé L. Otero
SOILS, SEC 1 • SOIL ORGANIC MATTER DYNAMICS AND NUTRIENT CYCLING • RESEARCH ARTICLE

Abstract

Purpose

The objective of this work was to evaluate methods for the determination of soil organic carbon (SOC) in mangrove samples in order to improve economically feasible and precise analytical alternatives

Materials and methods

Total SOC was quantified through elemental analyzer (EA), considered as the standard method, and compared to (a) a chemical method, based on the oxidation of SOC by potassium dichromate under various conditions: wet and dry samples, with or without external heat source and variations in sulfuric acid concentrations (3.6, 6, 9, and 12 mol L−1); (b) spectral reflectance; and (c) thermogravimetry.

Results and discussion

Regarding the chemical analysis, the use of dried samples improved the accuracy; external heat sources led to higher interference, with a lower correlation to EA SOC; and the higher correlation with the EA was obtained between a 6 M concentration of sulfuric acid (r = 0.733). The spectral reflectance method showed a low correlation between the EA (−0.492 < r < 0.252) while thermogravimetry showed the largest (r = 0.905).

Conclusions

SOC determination through chemical methods using dry samples with a sulfuric acid concentration of 6 M shows the best accuracy. As for the use of the spectral reflectance method in mangrove soils, further studies are needed to investigate the influence of pre- and postprocessing techniques. Thermogravimetry is characterized as the most adequate alternative method for SOC measurement when EA are not available since a correction factor is used (f = 0.27) to convert the soil organic matter content to SOC.

Keywords

Blue carbon Coastal wetland areas Mangroves Soil organic matter Spectral reflectance Thermogravimetry Walkley-Black 

Notes

Acknowledgments

The first author thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and São Paulo Research Foundation (FAPESP), grant no. 2014/11778-5, for financial support. The present study was partially funded by the Conselleria de Innovación e Industrial Xunta de Galicia (Spain) (PGIDIT08MDS036000PR) and PROMETEO program from the Ecuador government. The authors also thank both anonymous reviewers for their insightful comments.

Supplementary material

11368_2014_1019_MOESM1_ESM.docx (14 kb)
ESM 1(DOCX 14 kb)

References

  1. Almeida CMVB, Giannetti B (2002) Comparative study of electrochemical and thermal oxidation of pyrite. J Solid State Electrochem 6(2):111–118CrossRefGoogle Scholar
  2. Alongi DM, Wattayakorn G, Pfitzner J, Tirendi F, Zagorskis I, Brunskill GJ, Clough BF (2001) Organic carbon accumulation and metabolic pathways in sediments of mangrove forests in southern Thailand. Mar Geol 179(1):85–103CrossRefGoogle Scholar
  3. Antonijević MM, Dimitrijević M, Janković Z (1993) Investigation of pyrite oxidation by potassium dichromate. Hydrometallurgy 32(1):61–72CrossRefGoogle Scholar
  4. Bartholomeus HM, Schaepman ME, Kooistra L, Stevens A, Hoogmoed WB, Spaargaren OSP (2008) Spectral reflectance based indices for soil organic carbon quantification. Geoderma 145(1):28–36CrossRefGoogle Scholar
  5. Bayer C, Martin-Neto L, Mielniczuk J, Pavinato A, Dieckow J (2006) Carbon sequestration in two Brazilian Cerrado soils under no-till. Soil Tillage Res 86(2):237–245CrossRefGoogle Scholar
  6. Belzile N, Maki S, Chen YW, Goldsack D (1997) Inhibition of pyrite oxidation by surface treatment. Sci Total Environ 196(2):177–186CrossRefGoogle Scholar
  7. Bernoux M, Carvalho MCS, Volkoff B, Cerri CC (2002) Brazil’s soil carbon stocks. Soil Sci Soc Am J 66(3):888–896CrossRefGoogle Scholar
  8. Bisutti I, Hilke I, Raessler M (2004) Determination of total organic carbon—an overview of current methods. Trends Anal Chem 23(10–11):716–726CrossRefGoogle Scholar
  9. Chan KY, Bowman A, Oates A (2001) Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys. Soil Sci 166(1):61–67CrossRefGoogle Scholar
  10. Connor RF, Chmura GL, Beecher CB (2001) Carbon accumulation in Bay of Fundy salt marshes: implications for restoration of reclaimed marshes. Glob Biogeochem Cycles 15(4):943–954CrossRefGoogle Scholar
  11. Crowley JK, Williams DE, Hammarstrom JM, Piatak N, Chou IM, Mars JC (2003) Spectral reflectance properties (0.4–2.5 μm) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate minerals associated with sulphide-bearing mine wastes. Geochem Explor Environ Anal 3(3):219–228CrossRefGoogle Scholar
  12. Da Silva EV, De Souza MMA (2006) Principais formas de uso e ocupação dos manguezais do Estado do Ceará. Caderno de Cultura e Ciênc 1:12–20Google Scholar
  13. Davies BE (1974) Loss-on-ignition as an estimate of soil organic matter. Soil Sci Soc Am J 38(1):150–151CrossRefGoogle Scholar
  14. de Mendonça ES, da Matos ES (2005) Matéria orgânica do solo: métodos de análises. UFV, Viçosa, Minas GeraisGoogle Scholar
  15. De Vos B, Lettens S, Muys B, Deckers JA (2007) Walkley–Black analysis of forest soil organic carbon: recovery, limitations and uncertainty. Soil Use Manag 23(3):221–229CrossRefGoogle Scholar
  16. Dodge Y (2008) The concise encyclopedia of statistics. SpringerGoogle Scholar
  17. Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4(5):293–297CrossRefGoogle Scholar
  18. Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis: part 1—physical and mineralogical methods; American Society of Agronomy; pp 383–411Google Scholar
  19. Gomez C, Viscarra Rossel RA, McBratney AB (2008) Soil organic carbon prediction by hyperspectral remote sensing and field VIS-NIR spectroscopy: an Australian case study. Geoderma 146(3):403–411CrossRefGoogle Scholar
  20. Hopkinson CS, Cai WJ, Hu X (2012) Carbon sequestration in wetland dominated coastal systems—a global sink of rapidly diminishing magnitude. Curr Opin Environ Sustain 4(2):186–194CrossRefGoogle Scholar
  21. Howard PJA, Howard DM (1990) Use of organic carbon and loss-on-ignition to estimate soil organic matter in different soil types and horizons. Biol Fertil Soils 9(4):306–310Google Scholar
  22. Howard J, Hoyt S, Isensee K, Telszewski M, Pidgeon E (2014) Coastal blue carbon: methods for assessing carbon stock and emission factors in mangroves, tidal salt marshes, and seagrasses. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature, Arlington, VirginiaGoogle Scholar
  23. Huerta-Diaz MA, Morse JW (1990) A quantitative method for determination of trace metal concentrations in sedimentary pyrite. Mar Chem 29:119–144CrossRefGoogle Scholar
  24. IPCC (2014) 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: wetlands. Hiraishi T, Krug T, Tanabe K, Srivastava N, Baasansuren J, Fukuda M, Troxler TG (eds). IPCC, SwitzerlandGoogle Scholar
  25. Kathiresan K (2005) Distribution of mangroves. UNU-INWEH-UNESCOGoogle Scholar
  26. Kauffman JB, Cummings DL, Ward DE, Babbitt R (1995) Fire in the Brazilian Amazon: 1. Biomass, nutrient pools, and losses in slashed primary forests. Oecologia 104(4):397–408CrossRefGoogle Scholar
  27. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Sci 304(5677):1623–1627CrossRefGoogle Scholar
  28. Maia LP, Lacerda LD, Monteiro LHU, Souze GM (2006) Atlas dos manguezais do Nordeste do Brasil. SEMACE, Fortaleza, Ceará, BrazilGoogle Scholar
  29. Mingorance MD, Barahona E, Fernández-Gálvez J (2007) Guidelines for improving organic carbon recovery by the wet oxidation method. Chemosphere 68(3):409–413CrossRefGoogle Scholar
  30. Nellemann C, Corcoran E, Duarte CM, Valdés L, De Young C, Fonseca L, Grimsditch G (2009) Blue carbon. A rapid Response Assessment. United Nation Environment Programme, GRID-ArendalGoogle Scholar
  31. Nóbrega GN, Ferreira TO, Romero RE, Marques AGB, Otero XL (2013) Iron and sulfur geochemistry in semi-arid mangrove soils (Ceará, Brazil) in relation to seasonal changes and shrimp farming effluents. Environ Monit Assess 185(9):7393–7407CrossRefGoogle Scholar
  32. Pansu M, Gautheyrou J (2006) Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer, 2006Google Scholar
  33. Reddy KR, Feijtel TC, Patrick WH Jr (1986) Effect of soil redox conditions on microbial oxidation of organic matter. In: Chen Y, Avnimelech Y (eds) The role of organic matter in modern agriculture. Martinus Nijhoff Publishers, Dordrecht, pp 117–156CrossRefGoogle Scholar
  34. Schulte EE, Hopkins BG (1996) Estimation of soil organic matter by weight loss-on-ignition. In: Madgoff F, Tabatai MA, Hanlon EA (eds) Soil organic matter: analysis and interpretation. Soil Science Society Special Publication, pp 21–31Google Scholar
  35. Shepherd KD, Walsh MG (2002) Development of reflectance spectral libraries for characterization of soil properties. Soil Sci Soc Am J 66(3):988–998CrossRefGoogle Scholar
  36. Sleutel S, De Neve S, Singier B, Hofman G (2007) Quantification of organic carbon in soils: a comparison of methodologies and assessment of the carbon content of organic matter. Commun Soil Sci Plant Anal 38(19–20):2647–2657CrossRefGoogle Scholar
  37. Sousa FP, Ferreira TO, Mendonça ES, Romero RE, Oliveira JGB (2012) Carbon and nitrogen in degraded Brazilian semi-arid soils undergoing desertification. Agric Ecosyst Environ 148:11–21CrossRefGoogle Scholar
  38. Viscarra Rossel RA, Walvoort DJJ, McBratney AB, Jnaik JL, Skjemstad JO (2006) Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131:59–75CrossRefGoogle Scholar
  39. Vuong TX, Heitkamp F, Jungkunst HF, Reimer A, Gerold G (2013) Simultaneous measurement of soil organic and inorganic carbon: evaluation of a thermal gradient analysis. J Soils Sediments 13:1133–1140CrossRefGoogle Scholar
  40. Walkley A, Black IA (1934) An examination of the Degtijareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38CrossRefGoogle Scholar
  41. Wang X, Wang J, Zhang J (2012) Comparisons of three methods for organic and inorganic carbon in calcareous soils of northwestern China. PLoS ONE 7(8):e44334CrossRefGoogle Scholar
  42. Wright AL, Wang Y, Reddy KR (2008) Loss-on-ignition method to assess soil organic carbon in calcareous everglades wetlands. Commun Soil Sci Plant Anal 39:3074–3083CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gabriel N. Nóbrega
    • 1
  • Tiago O. Ferreira
    • 1
  • Adriana G. Artur
    • 2
  • Eduardo S. de Mendonça
    • 3
  • Raimundo A. de O. Leão
    • 4
  • Adunias S. Teixeira
    • 4
  • Xosé L. Otero
    • 5
  1. 1.Departamento de Ciência do SoloEscola Superior de Agricultura Luiz de Queiroz, ESALQ/USPPiracicabaBrazil
  2. 2.Departamento de Ciências do SoloUniversidade Federal do Ceará, UFCFortalezaBrazil
  3. 3.Departamento de Produção VegetalUniversidade Federal do Espírito Santo, UFESAlegreBrazil
  4. 4.Departamento de Engenharia AgrícolaUniversidade Federal do Ceará, UFCFortalezaBrazil
  5. 5.Departamento Edafoloxía e Química Agrícola, Facultade de BioloxíaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations