Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Pools of sulfur in urban rubble soils



Elevated concentrations of sulfate in groundwater are increasingly becoming a problem in several European cities. Building rubble from the World War II is assumed to be a major source of sulfate. This study characterizes pools of sulfur in rubble-composed technosols, and assesses their potential to release sulfate.


Six urban soil profiles have been analyzed. Fractions of the main technogenic components in the skeleton fractions were determined by hand sorting approximately 100 kg of material. Total sulfur and water soluble sulfate were determined. Microplate-scale fluorometric assays were applied to measure the depth-dependent enzyme activity of arylsulfatase. The mineral composition of soil samples was analyzed using powder X-ray diffractometry. Binding forms of sulfur were determined using X-ray absorption near-edge structure spectroscopy.


The maximum total content of sulfur is 4.6 g·kg−1; that of readily soluble sulfur is 2.3 g·kg−1. Both gypsum and traces of barite and ettringite were detected in some fine soil and component samples. Samples taken from deeper soil depths exhibited higher total sulfur and soluble sulfate contents. The depth profiles of sulfur and the activity of arylsulfatase suggest advanced leaching of inorganic sulfates from the upper horizons. Hence, sulfur is mainly organically bound in the topsoil. In the subsoil, however, sulfates make up about 90 % of total sulfur, approximately 30 % of which is readily soluble.


The sulfur pool of rubble-composed soils differs completely from natural soils. This is particularly the case for subsoils, in which high contents of sulfur are readily soluble. This suggests that sulfate minerals such as gypsum predominate. Urbic technosols can therefore be assumed to be one of the main sources of sulfates in urban groundwater.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Abel S, Nehls T, Mekiffer B, Wessolek G (2014) Heavy metals and benzo [a] pyrene in soils from construction and demolition rubble. J Soils Sediments. doi:10.1007/s11368-014-0959-4

  2. Alaily F, Grenzius R, Renger M, Stahr K, Tietz B, Wessolek G (1986) Soilscapes of Berlin (West) Mitteilgn Dtsch Bodenkundl Gesellsch 50

  3. Umweltschutz AF, Hamburg (2000) Umsetzung der EG-Wasserrahmenrichtlinie (WRRL) Environmental monitoring report Amt für Umweltschutz Hamburg

  4. Autry A, Fitzgerald J (1990) Sulfonate S: a major form of forest soil organic sulfur. Biol Fertility Soils 10(1):50–56

  5. Autry AR, Fitzgerald JW, Caldwell PR (1990) Sulfur fractions and retention mechanisms in forest soils. Canadian J Forest Res 20(3):337–342

  6. Birke M, Rauch U (2000) Urban geochemistry: investigations in the Berlin metropolitan area. Environ Geochem Health 22(3):233–248

  7. Brettholle M, Gleber SC, Mekiffer B, Legnini D, McNulty I, Vogt S, Wessolek G, Thieme J (2011) Spatially resolved sulfur speciation in urban soils. In: The 10th international conference on x-ray mircoscopy, AIP Publishing, vol 1365, pp 361–364

  8. Brown KA (1982) Sulphur in the environment: a review. Environmental Pollution Series B. Chem Phys 3(1):47–80

  9. Burghardt W (1994) Soils in urban and industrial environments. Zeitschrift für Pflanzenernährung und Bodenkunde 157(3):205–214

  10. Crammond N (2002) The occurrence of thaumasite in modern construction—a review. Cement and Concrete Composites 24(3):393–402

  11. Davison RL, Natusch DF, Wallace JR, Evans CA (1974) Trace elements in fly ash. Dependence of concentration on particle size. Environmen Scie & Tech 8(13):1107–1113

  12. Fällman A (2000) Leaching of chromium and barium from steel slag in laboratory and field tests--a solubility controlled process. Waste Manag 20(2):149–154

  13. Freney J, Stevenson F (1966) Organic sulfur transformations in soils. Soil Sci 101(4):307–316

  14. Gee C, Ramsey MH, Maskall J, Thornton I (1997) Mineralogy and weathering processes in historical smelting slags and their effect on the mobilisation of lead. J Geochem Exploration 58(2):249–257

  15. Giacometti C, Cavani L, Baldoni G, Ciavatta C, Marzadori C, Kandeler E (2014) Microplate-scale fluorometric soil enzyme assays as tools to assess soil quality in a long-term agricultural field experiment. App Soil Ecol 75:80–85

  16. Grischek T, Nestler W, Piechniczek D, Fischer T (1996) Urban groundwater in Dresden, Germany. Hydro J 4(1):48–63

  17. Hampsoim C, Bailey J (1982) On the structure of some precipitated calcium alumino-sulphate hydrates. J Mater Scie 17(11):3341–3346

  18. Hannappel S, Jakobs F (2002) Bericht zur Grundwasserbeschaffenheit 1995-2000 im Land Brandenburg. Tech. rep. Ministerium für Landwirtschaft Umweltschutz und Raumordnung Brandenburg

  19. Hannappel S, Reinhardt S (2002) Hydrochemische Charakterisierung des Grundwassers in Berlin. Tech rep. Senatsverwaltung für Stadtentwicklung, Berlin

  20. Hannappel S, Asbrand M, Duscher K, Külick C, Jakobs F (2003) Risikoabschatzung diffuser Schadstoffquellen für das Berliner Grundwasser. Tech rep. Senatsverwaltung für Stadtentwicklung, Berlin

  21. Jang Y, Townsend T (2001) Sulfate leaching from recovered construction and demolition debris fines. Adv Environ Res 5(3):203–217

  22. Jang YC, Townsend TG (2003) Effect of waste depth on leachate quality from laboratory construction and demolition debris landfills. Environ Eng Sci 20(3):183–196

  23. Keren R, Kauschansky P (1981) Coating of calcium carbonate on gypsum particle surfaces. Soil Sci Society Am J 45(6):1242–1244

  24. Kirsch H, Pollmann S (1966) Entstehung, Phasenbestand und Reaktionen von Brennstoffschlacken in Hochdruckdampfkraftwerken. Kristall und Technik 1(4):643–651

  25. Kontoyannis C, Orkoula M, Koutsoukos P (1997) Quantitative analysis of sulfated calcium carbonates using raman spectroscopy and x-ray powder diffraction. Anal 122(1):33–38

  26. Kutchko BG, Kim AG (2006) Fly ash characterization by sem–eds. Fuel 85(17):2537–2544

  27. Abfall L (1998) Technische Regeln Aschen und Schlacken aus steinkohlenbefeuerten Kraftwerken Heizkraftwerken und Heizwerken) Merkblatt Landesarbeitsgemeinschaft Abfall

  28. Lorenz K, Kandeler E (2005) Biochemical characterization of urban soil profiles from stuttgart, germany. Soil Biol Biochem 37(7):1373–1385

  29. Manceau A, Nagy KL (2012) Quantitative analysis of sulfur functional groups in natural organic matter by XANES spectroscopy. Geochimica et Cosmochimica Acta 99:206–223

  30. Martínez-Lage I, Martínez-Abella F, Vázquez-Herrero C, Pérez-Ordóñez JL (2012) Properties of plain concrete made with mixed recycled coarse aggregate. Construct Build Mater 37:171–176

  31. Marx MC, Wood M, Jarvis S (2001) A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem 33(12):1633–1640

  32. McGill W, Cole C (1981) Comparative aspects of cycling of organic c, n, s and p through soil organic matter. Geoderma 26(4):267–286

  33. Nehls T, Rokia S, Mekiffer B, Schwartz C, Wessolek G (2013) Contribution of bricks to urban soil properties. J Soils Sediments 13(3):575–584

  34. Philips The Netherlands (2001) X’PERT HIGHSCORE—Program for Crystal Structure identification

  35. Prietzel J, Thieme J, Neuhäusler U, Susini J, Kögel-Knabner I (2003) Speciation of sulphur in soils and soil particles by x-ray spectromicroscopy. Eur J Soil Sci 54(2):423–433

  36. Prietzel J, Thieme J, Salomé M, Knicker H (2007) Sulfur K-edge XANES spectroscopy reveals differences in sulfur speciation of bulk soils, humic acid, fulvic acid, and particle size separates. Soil Biol Biochem 39(4):877–890

  37. Prietzel J, Thieme J, Salome M (2010) Assessment of sulfur and iron speciation in a soil aggregate by combined S and Fe micro-XANES: microspatial patterns and relationships. J Synchrotron Radiation 17(2):166–172

  38. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiation 12(4):537–541

  39. Roy A (2009) Sulfur speciation in granulated blast furnace slag: an x-ray absorption spectroscopic investigation. Cement Concrete Res 39(8):659–663

  40. Scherer WH (2009) Sulfur in soils. J Plant Nutrition Soil Scie 172(3):326–335

  41. Schleuß U, Wu Q, Blume HP (1998) Variability of soils in urban and periurban areas in northern germany. Catena 33(3):255–270

  42. Schonsky H, Peters A, Lang F, Abel S, Mekiffer B, Wessolek G (2013) Sulfate transport and release in technogenic soil substrates: experiments and numerical modeling. J Soils Sediments 13(3):606–615

  43. Scott P, Critchley S, Wilkinson F (1986) The chemistry and mineralogy of some granulated and pelletized blastfurnace slags. Mineralogical Magazine 50(355):141–147

  44. Shaw R, Wilson M, Reinhardt L, Isleib J, Gilkes R et al (2010) Geochemistry of artifactual coarse fragment types from selected new york city soils. In: World Congress of Soil Science, Soil Solutions for a Changing World, pp 1–6

  45. Solomon D, Lehmann J (2003) Sulfur K-edge XANES spectroscopy as a tool for understanding sulfur dynamics in soil organic matter. Soil Sci Society Am J 67(6):1721–1731

  46. Speir T, Pansier EA, Cairns A et al (1980) A comparison of sulphatase, urease and protease activities in planted and in fallow soils. Soil biol biochem 12(3):281–291

  47. Stanko-Golden K, Swank W, Fitzgerald J (1994) Factors affecting sulfate adsorption, organic sulfur formation, and mobilization in forest and grassland spodosols. Biol Fertility Soils 17(4):289–296

  48. Strayer RF, Davis EC (1983) Reduced sulfur in ashes and slags from the gasification of coals: availability for chemical and microbial oxidation. App Environmen Microbiol 45(3):743–747

  49. Tabatabai M, Bremner J (1970) Factors affecting soil arylsulfatase activity. Soil Sci Society Am J 34(3):427–429

  50. Tabatabai M, Bremner J (1972a) Distribution of total and available sulfur in selected soils and soil profiles. Agronomy J 64(1):40–44

  51. Tabatabai M, Bremner J (1972b) Forms of sulfur, and carbon, nitrogen and sulfur relationships, in iowa soils. Soil Sci 114(5):380–386

  52. Umweltamt Dresden (2010) Umweltbericht Grundwasser. Environmental monitoring report

  53. Vairavamurthy A (1998) Using x-ray absorption to probe sulfur oxidation states in complex molecules. Spectrochim Acta A 54(12):2009–2017

  54. Wessolek G, Kluge B, Toland A, Nehls T, Klingelmann E, Rim YN, Mekiffer B (2011) Urban soils in the vadose zone. In: Perspectives in Urban Ecology. Springer, pp 89–133

  55. Wisotzky F (2011) Angewandte Grundwasserchemie Hydrogeologie und hydrogeochemische Modellierung Grundlagen Anwendungen und Problemlosunge. Springer DE

  56. Xia K, Weesner F, Bleam W, Helmke P, Bloom P, Skyllberg U (1998) XANES studies of oxidation states of sulfur in aquatic and soil humic substances. Soil Sci Society Am J 62 (5):1240– 1246

  57. Zucker A, Zech W (1985) Sulfur status of four uncultivated soil profiles in northern Bavaria. Geoderma 36(3):229–240

Download references


Our thanks go to the funding agency DFG, which has supported our project (We 1125/26-1) as well to the Berlin Senate Department for Urban Development and the environment, funding the current project. Furthermore, we want to thank U. Szewzyk for enzyme activity measurement and C. Lange for her assistance analyzing the x-ray diffractograms. We thank SLRI for the allocation of beamtime and HZB for the allocation of synchrotron radiation beamtime. Our thanks go to the anonymous reviewers for their helpful comments and suggestions.

Author information

Correspondence to Stefan Abel.

Additional information

Communicated by: Hailong Wang

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abel, S., Nehls, T., Mekiffer, B. et al. Pools of sulfur in urban rubble soils. J Soils Sediments 15, 532–540 (2015). https://doi.org/10.1007/s11368-014-1014-1

Download citation


  • Urban soil
  • Sulfur
  • Sulfate
  • Building subble
  • Urbic technosol