Journal of Soils and Sediments

, Volume 14, Issue 7, pp 1278–1286 | Cite as

Occurrence of pharmaceutical and personal care products (PPCPs) in marine sediments in the Todos os Santos Bay and the north coast of Salvador, Bahia, Brazil

  • Magda Beretta
  • Vicky Britto
  • Tania Mascarenhas TavaresEmail author
  • Sonilda Maria Teixeira da Silva
  • Adelmo Lowe Pletsch



The Todos os Santos Bay is the largest bay in Brazil and receives drainage from various watersheds. For more than 450 years, it was the main destination for the domestic and hospital sewage from the city of Salvador, Bahia. With the growing concern regarding the presence of pharmaceutical and personal care products (PPCPs) in the environment, an investigation was undertaken to determine the presence and levels of some commonly used drugs (i.e., atenolol, caffeine, carbamazepine, diazepam, diclofenac, erythromycin, ibuprofen) and personal care products (i.e., galaxolide, tonalide), using sediments as an indicator of their presence in the water column.

Material and methods

Surficial sediment samples from 17 stations located in the intertidal zone of the Todos os Santos Bay and infralittoral zone along the north coast of Salvador were tested for the presence of some PPCPs using LC-MS/MS (for drugs) and GC-MS/MS (for fragrances).

Results and discussion

The PPCPs examined were present in all sediment samples at levels of parts per billion of dry sediment. The highest concentrations were found for the fragrances galaxolide (52.5 ng g−1) and tonalide (27.9 ng g−1), followed by caffeine (23.4 ng g−1) and pharmaceuticals ibuprofen (14.3 ng g−1), atenolol (9.84 ng g−1), carbamazepine (4.81 ng g−1), erythromycin (2.29 ng g−1), diclofenac (1.06 ng g−1), and diazepam (0.71 ng g−1).


Pharmaceuticals were found to be ubiquitous in the sediments of the study areas. The texture of the sediment was an important factor in PPCPs fixation and deposition. The concentrations of all PPCPs had statistically significant positive correlations with the percentage of clay in the sediments.


Emerging contaminants Endocrine disrupting chemicals Marine pollution Sewage 


  1. Barceló D, Ayora C, Carrera J, Castaño S, Folch M, Calvo E, Alday J, Guasch H, Jofre J, Lema J, Alda M, Lucena F, Amich R, Muñoz I, Nieto J, Omil F, Ortiz I, Romaní A, Sabater S, Salgot M, Vila X, Sanz D, Suárez S, Torrens A (2008) Aguas continentales—Gestión de recursos hídricos, tratamiento y calidad del agua. Informes do Consejo Superior de Investigaciones Científicas, MadridGoogle Scholar
  2. Borja P, Moraes L (2012) Programa de saneamento ambiental da Bahia, Bahia Azul: características, resultados e análise crítica. In: Barreto M (ed) Avaliação epidemiológica do impacto das ações do Programa Bahia Azul. Fiocruz, SalvadorGoogle Scholar
  3. Conkle JL, Gan J, Anderson MA (2012) Degradation and sorption of commonly detected PPCPs in wetland sediments under aerobic and anaerobic conditions. J Soils Sediments 12:1164–1173CrossRefGoogle Scholar
  4. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107(suppl 6):907–938CrossRefGoogle Scholar
  5. Di Guardo A, Calamari D, Benfenati E, Halling-Sorensen B, Zuccato E, Fanelli R (2004) Pharmaceuticals as environmental contaminants: modeling distribution and fate. In: Kümmerer K (ed) Pharmaceuticals in the environment: sources, fate, effects and risks, 2nd edn. Springer, Freiburg, pp 185–194Google Scholar
  6. Ellis J (2006) Pharmaceutical and personal care products in urban receiving waters. Environ Pollut 1:184–189CrossRefGoogle Scholar
  7. EEA – European Environmental Agency (2010) Pharmaceuticals in the environment: results of an EEA workshop held in Copenhagen, Jan 2009. Publication of the European Communities, LuxembourgGoogle Scholar
  8. EMBRAPA (1997) Manual de métodos de análise do solo. EMBRAPA, Rio de JaneiroGoogle Scholar
  9. EPA (1997) Special report on environmental endocrine disruption: an effects assessment and analysis. US Environmental Protection Agency (EPA) Report EPA/630/R-96/012, USEPA, Washington DC, USAGoogle Scholar
  10. EPA (2011) PPCP Research areas Accessed 15 Jan 2013
  11. Fent K, Weston A, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159CrossRefGoogle Scholar
  12. Fromme H, Uchler T, Otto T, Pilz K, Müller J, Wenzel A (2002) Occurrence of phthalates and bisphenol A and F in the environment. Water Res 36:1429–1438CrossRefGoogle Scholar
  13. Ghiselli G (2006) Avaliação das águas destinadas ao abastecimento público na região de Campinas: Ocorrência e determinação dos interferentes endócrinos (IE) e produtos farmacêuticos e de higiene pessoal (PFHP). Unpublished dissertation, Universidade de Campinas, BrazilGoogle Scholar
  14. Gros M, Pizzolato T, Petrovi M, Alda M, Barceló D (2008) Trace level determination of beta-blockers in waste waters by highly selective molecularly imprinted polymers extraction followed by liquid chromatography-quadrupole-linear ion trap mass spectrometry. J Chromatogr A 1189:374–384CrossRefGoogle Scholar
  15. Hartig C, Storm T, Jekel M (1999) Detection and identification of sulphonamide drugs in municipal waste water by liquid chromatography coupled with electrospray ionisation tandem mass spectrometry. J Chromatogr A 854:163–173CrossRefGoogle Scholar
  16. Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17CrossRefGoogle Scholar
  17. Hirsch R, Ternes T, Haberer K, Kratz K (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109–118CrossRefGoogle Scholar
  18. Huggett D, Brooks B, Peterson B, Foran C, Schlenk D (2002) Toxicity of select beta adrenergic receptor-blocking pharmaceuticals on aquatic organisms. Arch Environ Contam Toxicol 43:229–235CrossRefGoogle Scholar
  19. Kulshrestha P, Giese R, Aga D (2004) Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ Sci Technol 38:4097–4105CrossRefGoogle Scholar
  20. Kümmerer K (2004) Pharmaceuticals in the environment: sources, fate, effects and risks. Springer, FreiburgCrossRefGoogle Scholar
  21. Mulroy A (2001) When the cure is the problem. Water Environ Technol 13:32–36Google Scholar
  22. Nash J, Kime D, Van Der Ven L, Wester P, Brion F, Maack G, Stahlschmidt-Allner P, Tyler C (2004) Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environ Health Perspect 112(17):1725–1733CrossRefGoogle Scholar
  23. Pan B, Xing B (2011) Pharmaceuticals and personal care products in soils and sediments. In: Xing B, Senesi N, Huang P (eds) Biophysico-chemical processes of anthropogenic organic compounds in environmental systems. Wiley, Massachusetts, pp 185–213CrossRefGoogle Scholar
  24. Pan B, Ning P, Xing B (2009) Humic substances. Review series. Part V—sorption of pharmaceuticals and personal care products. Environ Sci Pollut Res 16:106–116CrossRefGoogle Scholar
  25. Pawlowski S, Van Aerle R, Tyler C, Braunbeck T (2004) Effects of 17a-ethinylestradiol in a fathead minnow (Pimephales promelas) gonadal recrudescence assay. Ecotoxicol Environ Saf 57:330–345CrossRefGoogle Scholar
  26. Peters R, Courtenay S, Cagampan S, Hewitt M, Maclatchy D (2007) Effects on reproductive potential and endocrine status in the mummichog (Fundulus heteroclitus) after exposure to 17alpha-ethynylestradiol in a short-term reproductive bioassay. Aquat Toxicol 85:154–166CrossRefGoogle Scholar
  27. Pletsch A, Beretta M, Tavares T (2010) Distribuição espacial de compostos orgânicos de estanho em sedimentos costeiros e em Phallusia nigra da Baía de Todos os Santos e litoral norte da Bahia—Brasil. Quim Nova 33(2):451–457CrossRefGoogle Scholar
  28. Salomons W, Stigliani WM (1995) Biogeodynamics of pollutants in soils and sediments. Springer, BerlinCrossRefGoogle Scholar
  29. Sanderson H, Brain R, Johnson D, Wilson C, Solomon K (2004) Toxicity classification and evaluation of four pharmaceuticals classes: antibiotics, antieoplastics, cardiovascular, and sex hormones. Toxicology 203(1):27–40CrossRefGoogle Scholar
  30. SESAB - Secretaria da Saúde do Estado da Bahia (2009) Assistência farmacêutica na atenção básica. Planilha de consumos médios mensais de medicamentos de março de 2009 à agosto de 2009. SESAB, Salvador, BrazilGoogle Scholar
  31. Souza E (1978) Administração de medicamentos e preparo de soluções. Cultura Médica, Rio de JaneiroGoogle Scholar
  32. Stumpf M, Ternes T, Wilken R, Rodrigues S, Baumann W (1999) Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Sci Total Environ 225:135–141CrossRefGoogle Scholar
  33. Ternes T (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 11:3245–3260CrossRefGoogle Scholar
  34. Ternes T, Andersen H, Gilberg D, Bonerz M (2002a) Determination of estrogens in sludge and sediments by liquid extraction and GC/MS/MS. Anal Chem 74:3498–3504CrossRefGoogle Scholar
  35. Ternes T, Meisenheimer M, Mcdowell D, Sacher F, Brauch H, Gulde B, Preuss G, Wilme U, Seibert N (2002b) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36:3855–3863CrossRefGoogle Scholar
  36. WHO/UNEP/ILO (2004) Report of the joint IPCS—Japan workshop on endocrine disruptors: research needs and future directions. Tokyo, Japan. Available on Accessed 22 Jan 2013

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Magda Beretta
    • 1
  • Vicky Britto
    • 1
  • Tania Mascarenhas Tavares
    • 2
    Email author
  • Sonilda Maria Teixeira da Silva
    • 2
  • Adelmo Lowe Pletsch
    • 3
  1. 1.Escola PolitécnicaUniversidade Federal da Bahia, UFBASalvadorBrazil
  2. 2.Instituto de QuímicaUniversidade Federal da Bahia (UFBA)SalvadorBrazil
  3. 3.Universidade Tecnológica Federal do Paraná (UTFPR)MedianeiraBrazil

Personalised recommendations