Journal of Soils and Sediments

, Volume 14, Issue 1, pp 121–137 | Cite as

Geogenic and agricultural controls on the geochemical composition of European agricultural soils

  • Rémon Saaltink
  • Jasper Griffioen
  • Gerben Mol
  • Manfred Birke
  • The GEMAS Project Team



Concern about the environmental impact of agriculture caused by intensification is growing as large amounts of nutrients and contaminants are introduced into the environment. The aim of this paper is to identify the geogenic and agricultural controls on the elemental composition of European, grazing and agricultural soils.

Materials and methods

Robust factor analysis was applied to data series for Al, B, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Na, Ni, P, S, Se, Sr, U, Zn (ICP-MS) and SiO2, K2O, Na2O, Fe2O3, Al2O3 (XRF) based on the European GEMAS dataset. In addition, the following general soil properties were included: clay content, pH, chemical index of alteration (CIA), loss on ignition (LOI), cation exchange capacity (CEC), total organic carbon (TOC) and total carbon and total sulfur. Furthermore, this dataset was coupled to a dataset containing information of historic P2O5 fertilization across Europe. Also, a mass balance was carried out for Cd, Cu and Zn to determine if concentrations of these elements found in the soils have their origin in historic P2O5 fertilization.

Results and discussion

Seven geogenic factors and one agricultural factor were found of which four prominent ones (all geogenic): chemical weathering, reactive iron-aluminum oxide minerals, clay minerals and carbonate minerals. Results for grazing and agricultural soils were near identical, which further proofs the prominence of geogenic controls on the elemental composition. When the cumulative amount of P2O5 fertilization was considered, no extra agriculture-related factors became visible. The mass balance confirms these observations.


Overall, the geological controls are more important for the soil chemistry in agricultural and grazing land soils than the anthropogenic controls.


Agricultural impact GEMAS Robust factor analysis Soil geochemistry 



The GEMAS project is a cooperation project of the EuroGeoSurveys Geochemistry Expert Group with a number of outside organisations (e.g. Alterra in The Netherlands, the Norwegian Forest and Landscape Institute, several Ministries of the Environment and University Departments of Geosciences in a number of European countries, CSIRO Land and Water in Adelaide, Australia) and Eurometaux. The authors thank Clemens Reimann for his advice and support; Lex Bouwman, for providing the data of historic P2O5 fertilization; Peter Filzmoser, for providing the necessary R-scripts; and Cheryl van Kempen and Janneke Klein, for helping with the data analysis.


  1. Acosta JA, Martínez-Martínez S, Faz A, Arocena J (2011) Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials. Geoderma 161:30–42CrossRefGoogle Scholar
  2. Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, LondonCrossRefGoogle Scholar
  3. Amlinger F (2004) Heavy metals and organic compounds from wastes used as organic fertilisers. Compost-Consulting & Development, PerchtoldsdorfGoogle Scholar
  4. Apollaro C, Accornero M, Marini L, Barca D, De Rosa R (2009) The impact of dolomite and plagioclase weathering on the chemistry of shallow groundwaters circulating in a granodiorite-dominated catchment of the Sila Massif (Calabria, Southern Italy). Appl Geochem 24:957–979CrossRefGoogle Scholar
  5. Balogh-Brunstad Z, Keller CK, Bormann BT, O'Brien R, Wang D, Hawley G (2008) Chemical weathering and chemical denudation dynamics through ecosystem development and disturbance. Glob Biogeochem Cycles 22, GB1007CrossRefGoogle Scholar
  6. Barré P, Velde B, Montagnier C, Chenu C, Abbadie L (2008) Clay minerals as a soil potassium reservoir: observation and quantification through X-ray diffraction. Plant Soil 302:213–220CrossRefGoogle Scholar
  7. Birke M, Reimann C, Fabian K (2013) Analytical methods used in the GEMAS project. In: Reimann C, Birke M, Demetriades A, Filzmoser P, O'Connor P (eds) Chemistry of Europe's agricultural soils, Geologisches Jahrbuch (Reihe B), B 102, Chapter 5, Schweitzerbart Science Publishers, Stuttgart, 2013, 39–44 (in press)Google Scholar
  8. Blecker SW, McCulley RL, Chadwick OA, Kelly EF (2006) Biologic cycling of silica across a grassland bioclimosequence. Glob Biogeochem Cycles 20, GB3023CrossRefGoogle Scholar
  9. Böhlke JK (2002) Groundwater recharge and agricultural contamination. Hydrogeology 10:153–179CrossRefGoogle Scholar
  10. Bonten LTC, Kroes JG, Groenendijk P, Van der grift B (2012) Modelling diffusive Cd and Zn contaminant emissions from soils to surface water. J Contam Hydrol 138:113–122CrossRefGoogle Scholar
  11. Bouwman L, Klein Goldewijk K, Van der Hoek KW, Beusen AHW, van Vuuren DP, Willems J, Rufino MC, Stehfest E (2011) Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc Nat Acad Sci 1–6Google Scholar
  12. Buraczynski J (1988) Lithological, mineralogical and geochemical characteristics of loesses in the Rhinegraben. Eng Geol 25:201–208CrossRefGoogle Scholar
  13. Burke IC, Yonker CM, Parton WJ, Cole CV, Schimel DS, Flach K (1989) Texture, climate, and cultivation effects on soil organic matter content in U.S. Grassland soils. Soil Sci Soc Am J 53:800–805CrossRefGoogle Scholar
  14. Cabannes E, Buchner P, Broadley MR, Hawkesford MJ (2011) A comparison of sulfate and selenium accumulation in relation to the expression of sulfate transporter genes in astragalus species. Plant Physiol 157:2227–2239CrossRefGoogle Scholar
  15. Caillaud J, Proust D, Philippe S, Fontaine C, Fialin M (2009) Trace metals distribution from a serpentinite weathering at the scales of the weathering profile and its related weathering microsystems and clay minerals. Geoderma 149:199–208CrossRefGoogle Scholar
  16. de Caritat P, Reimann C, Bogatyrev I, Chekushin V, Finne TE, Halleraker JH, Äyräs M (2001) Regional distribution of Al, B, Ba, Ca, K, La, Mg, Mn, Na, P, Rb, Si, Sr, Th, U and Y in terrestrial moss within a 188,000 km2 area of the central Barents region: influence of geology, seaspray and human activity. Appl Geochem 16:137–159CrossRefGoogle Scholar
  17. Chardon ES, Bosbach D, Bryan ND, Lyon IC, Marquardt C, Romer J, Livens FR (2008) Reactions of the feldspar surface with metal ions: Sorption of Pb(II), U(VI) and Np(V), and surface analytical studies of reaction with Pb(II) and U(VI). Geochim Cosmochim Acta 72:288–297CrossRefGoogle Scholar
  18. Chen GC, He ZL, Stoffella PJ, Yang XE, Yu S, Yang JY, Calvert DV (2006) Leaching potential of heavy metals (Cd, Ni, Pb, Cu and Zn) from acidic sandy soils amended with dolomite phosphate rock (DPR0 fertilizers). J Trace Elem Med Bio 20:127–133CrossRefGoogle Scholar
  19. Chiprés JA, de la Calleja A, Tellez JI, Jiménez F, Cruz C, Guerrero EG, Castro J, Monroy MG, Salinas JC (2009) Geochemistry of soils along a transect from Central Mexico to the Pacific Coast: A pilot study for continental-scale geochemical mapping. Appl Geochem 24:1416–1428CrossRefGoogle Scholar
  20. Clymans W, Struyf E, Govers G, Vandevenne F, Conley DJ (2011) Anthropogenic impact on amorphous silica pools in temperate soils. Biogeosciences 8:2281–2293CrossRefGoogle Scholar
  21. Deer WA, Howie RA, Zussmann J (1966) An introduction to the rock-forming minerals. Longman, Harlow, 528 ppGoogle Scholar
  22. Drouet T, Herbauts J, Gruber Demaiffe D (2007) Natural strontium isotope composition as a tracer of weathering patterns and of exchangeable calcium sources in acid leached soils developed on loess of Central Belgium. European J Soil Sci 58:302–319CrossRefGoogle Scholar
  23. Dürr HH, Meybeck M, Dürr SH (2005) Lithologic composition of the Earth's continental surfaces derived from a new digital map emphasizing riverine material transfer. Glob Biogeochem Cycles 19:1–22CrossRefGoogle Scholar
  24. Edmeades DC (2003) The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutr Cycl Agroecosyst 66:165–180CrossRefGoogle Scholar
  25. Egozcue JJ, Pawlowsky Glahn V, Mateu Figueras G, Barceló Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35:279–300CrossRefGoogle Scholar
  26. EuroGeoSurveys (EGS) Geochemistry Working Group (2008) EuroGeoSurveys Geochemical mapping of agricultural and grazing land soil of Europe (GEMAS)—Field manual. Norway, Trondheim < >
  27. FAO (2012) Current world fertilizer trends and outlook to 2016. Rome, ItalyGoogle Scholar
  28. Filzmoser P, Hron K, Reimann C (2009a) Univariate statistical analysis of environmental (compositional) data: problems and possibilities. Sci Total Environ 407:6100–6108CrossRefGoogle Scholar
  29. Filzmoser P, Hron K, Reimann C, Garret RG (2009b) Robust factor analysis for compositional data. Comput Geosci 35:1854–1861CrossRefGoogle Scholar
  30. Filzmoser P, Hron K, Reimann C (2010) The bivariate statistical analysis of environmental (compositional) data. Sci Total Environ 408:4230–4238CrossRefGoogle Scholar
  31. Goldich SS (1938) A study in rock-weathering. J Geol 46:17–58CrossRefGoogle Scholar
  32. Griffioen J, Klein J, Heerdink R (2011) Nationwide characterisation of buffering capacities and background compositions of groundwater aquifers in the Netherlands. Int Assoc Hydrol Sci 342:318–321Google Scholar
  33. Groenenberg JE, Römkens PF, Comans RNJ, Luster J, Pampura T, Shotbolt L, Tipping E, de Vries W (2010) Transfer functions for solid-solution partitioning of cadmium, copper, nickel, lead and zinc in soils: derivation of relationships for free metal ion activities and validation with independent data. Eur J Soil Sci 61:58–73CrossRefGoogle Scholar
  34. Haase D, Fink J, Haase G, Ruske R, Pésci M, Richter H, Altermann M, Jäger KD (2007) Loess in Europe—its spatial distribution based on a European Loess Map, scale 1:2,500,000. Quaternary Sci Rev 26:1301–1312CrossRefGoogle Scholar
  35. Hackenberg S, Wegener HR (1999) Schadstoffeinträge in Böden durch Wirtschafts- und Mineraldünger, Komposte und Klärschlamm sowie durch atmosphärische Deposition. Bewertung relevanter Schadstoffeinträge. Abfall-Wirtschaft - Neues aus Forschung und Praxis, WitzenhausenGoogle Scholar
  36. Hartmann J, Dürr HH, Moosdorf N, Meybeck M, Kempe S (2012) The geochemical composition of the terrestrial surface (without soils) and comparison with the upper continental crust. Int J Earth Sci 101:365–376CrossRefGoogle Scholar
  37. Hartmann K, Moosdorf N (2011) Chemical weathering rates of silicate-dominated lithological classes and associated liberation rates of phosphorus on the Japanese Archipelago—implications for global scale analysis. Chem Geol 287:125–157CrossRefGoogle Scholar
  38. Hartmann K, Moosdorf N (2012) The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochem Geophys Geosyst 13, Q12004CrossRefGoogle Scholar
  39. Hemming NG, Hanson GN (1992) Boron isotope composition and concentration in modern marine carbonates. Geochimica et Cosmochim Acta 56:537–543CrossRefGoogle Scholar
  40. Imrie CE, Korre A, Munoz-Melendez G, Thornton I, Durucan S (2008) Application of factorial kriging analysis to the FOREGS European topsoil geochemistry database. Sci Total Environ 393:96–110CrossRefGoogle Scholar
  41. ISO 10694 (1995) Soil quality—determination of organic and total carbon after dry combustion (elementary analysis). Beuth Verlag, Berlin, (DIN ISO 10694: 1996–08), 1–7Google Scholar
  42. Kasemann SA, Hawkesworth CJ, Prave AR, Fallick AE, Pearson PN (2005) Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: evidence for extreme environmental change. Earth Planet Sci Lett 231:73–86CrossRefGoogle Scholar
  43. Kittrick JA, Jackson ML (1955) Rate of phosphate reaction with soil minerals and electron microscope observations on the reaction mechanism. Soil Sci Soc Am J 19:292–295CrossRefGoogle Scholar
  44. Kostic N, Protic N (2000) Pedology and mineralogy of loess profiles at Kapela-Batajnica and Stalac, Serbia. Catena 41:217–227CrossRefGoogle Scholar
  45. Lazarenkov VG IV, Talovina NI, Vorontsova OP, Mezentseva SO, Ryzhkova (2011) Nickel chlorites in the oxide-silicate nickel deposits of the Urals. Lithol Miner Resour 46:312–320CrossRefGoogle Scholar
  46. Malamis S, Katsou E (2013) A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms. J Hazard Mater 253:428–461CrossRefGoogle Scholar
  47. Malhi SS, Harapiak JT, Karamanos R, Gill KS, Flore N (2003) Distribution of acid extractable P and exchangeable K in a grassland soil as affected by long-term surface application of N, P and K fertilizers. Nutr Cycle Agroecosys 67:265–272CrossRefGoogle Scholar
  48. Malisa EP (2001) The behavior of selenium in geological products. Environ Geochem Health 23:137–158CrossRefGoogle Scholar
  49. Matlou MC, Haynes RJ (2006) Soluble organic matter and microbial biomass C and N in soils under pasture and arable management and the leaching of organic C, N and nitrate in a lysimeter study. Appl Soil Ecol 34:160–167CrossRefGoogle Scholar
  50. Miller CW, Foster GD, Majedi BF (2003) Baseflow and stormflow metal fluxes from two small agricultural catchments in the Coastal Plain of the Chesapeake Bay Basin, United States. Appl Geochem 18:483–501CrossRefGoogle Scholar
  51. Moosdorf N, Hartmann J, Lauerwald R, Hagedorn B, Kempe S (2011) Atmospheric CO2 consumption by chemical weathering in North America. Geochim Cosmochim Acta 75:7829–7854CrossRefGoogle Scholar
  52. Morton AC, Hallsworth CR (1999) Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment Geol 124:3–29CrossRefGoogle Scholar
  53. Nesbit HW, Young GM (1982) Early Proterozic climates and plate motions inferred from major element chemistry of lutites. Nature 209:715–721CrossRefGoogle Scholar
  54. Nichols G (2009) Sedimentology and stratigraphy. Wiley-Blackwell, Hoboken, New Jersey, pp. 16–17Google Scholar
  55. Nicholson FA, Chambers BJ, Williams JR (1999) Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresource Technol 70:23–31CrossRefGoogle Scholar
  56. Otero N, Vitòria L, Soler A, Canals A (2005) Fertiliser characterisation: major, trace and rare earth elements. Appl Geochem 20:1473–1488CrossRefGoogle Scholar
  57. Peijnenburg WJGM, Zablotskaja M, Vijver MG (2007) Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction. Ecotoxicol Environ Saf 67:163–179CrossRefGoogle Scholar
  58. Pierson-Wickmann AC, Aquilina L, Martin C, Ruiz L, Molenat J, Jaffrezic A, Gascuel-Odoux C (2009) High chemical weathering rates in first-order granitic catchments induced by agricultural stress. Chem Geol 265:369–380CrossRefGoogle Scholar
  59. Pison G, Rousseeuw PJ, Filzmoser P, Croux C (2003) Robust factor analysis. J Multivariate Anal 84:145–172CrossRefGoogle Scholar
  60. Ponthieu M, Juillot F, Hiemstra T, Van Riemsdijk WH, Benedetti MF (2006) Metal ion binding to iron oxides. Geochimica et Cosmochim Acta 70:2679–2698CrossRefGoogle Scholar
  61. Raitzsch M, Dueñas Bohórquez A, Reichart GJ, De Nooijer LJ, Bickert T (2010) Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: impact of calcium concentration and associated calcite saturation state. Biogeosciences 7:869CrossRefGoogle Scholar
  62. Reimann C, Arnoldussen A, Englmaier P, Filzmoser P, Finne TE, Garret RG, Nordgulen O (2007) Element concentrations and variations along a 120-km transect in southern Norway—anthropogenic vs. geogenic vs. biogenic element sources and cycles. Appl Geochem 22:851–871CrossRefGoogle Scholar
  63. Reimann C, Filzmoser P, Hron K, Birke M, Demetriades A, Dinelli E, Ladenberger A (2012a) GEMAS Project Team. The concept of compositional data analysis in practice—total major element concentrations in agricultural and grazing land soils. Sci Total Environ 426:196–210CrossRefGoogle Scholar
  64. Reimann C, Flem B, Fabian K, Birke M, Ladenberger A, Negrel P, Hoogewerff J (2012b) Lead and lead isotopes in agricultural soils of Europe—the continental perspective. Appl Geochem 27:532–542CrossRefGoogle Scholar
  65. Reimann C, Garret RG (2005) Geochemical background—concept and reality. Sci Total Environ 350:12–27CrossRefGoogle Scholar
  66. Reimann C, Matschullat J, Birke M, Salminen R (2010) Antimony in the environment: lessons from geochemical mapping. Appl Geochem 25:175–198CrossRefGoogle Scholar
  67. Rodrigues SM, Cruz N, Coelho C, Henriques B, Carvalho L, Duarte AC, Pereira E, Römkens PF (2012a) Risk assessment for Cd, Cu, Pb and Zn in urban soils: chemical availability as the central concept. Environ Pollut. doi: 10.1016/j.envpol.2012.10.006 Google Scholar
  68. Rodrigues SM, Pereira E, Duarte AC, Römkens PF (2012b) Derivation of soil to plant transfer functions for metals and metalloids: impact of contaminant's availability. Plant Soil 361:329–341CrossRefGoogle Scholar
  69. Rodríguez-Lado L, Hengl T, Reuter HI (2008) Heavy metals in European soils: a geostatistical analysis of the FOREGS Geochemical database. Geoderma 148:189–199CrossRefGoogle Scholar
  70. Römkens PF, Guh HY, Chu CL, Liu TS, Chiang CF, Koopmans GF (2009) Characterization of soil heavy metal pools in paddy fields in Taiwan: chemical extraction and solid-solution partitioning. J Soils Sediments 9:216–228CrossRefGoogle Scholar
  71. Rudel TK, Schneider M, Uriarte BL, Turner R, DeFries D, Lawrence J, Geoghegan S, Hecht A, Ickowitz EF, Lambin T, Birkenholtz S, Baptista R, Grau (2009) Agricultural intensification and changes in cultivated areas, 1970–2005. Proc Natl Acad Sci U S A 106:20675–20680CrossRefGoogle Scholar
  72. Rudnick GL, Gao S (2003) Composition of the continental crust. Treatise on Geochem 1–64Google Scholar
  73. Salminen R (Chief-editor), Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, O'Connor PJ, Olsson SÅ, Ottesen RT, Petersell V, Plant JA, Reeder S, Salpeteur I, Sandström H, Siewers U, Steenfelt A, Tarvainen T (2005) Geochemical Atlas of Europe. Part 1 - Background Information, Methodology and Maps. GTK, FOREGSGoogle Scholar
  74. Searle PL (1984) The measurement of soil cation-exchange properties using the single extraction, silver thiourea method—an evaluation using a range of New-Zealand soils. Aust J Soil Res 24:193–200CrossRefGoogle Scholar
  75. Sen S, Chalk PM (1993) Chemical interactions between soil N and alkaline-hydrolysing N Fertilizers. Nutr Cycle Agroecosys 36:239–248Google Scholar
  76. Smith KS, Huyck HLO (1999) An overview of the abundance, relative mobility, bioavailability, and human toxicity of metals. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits. Part A: Processes, techniques, and health issues. Reviews in Economic Geology, Volume 6a, Soc. Econ. Geol, Inc., Littleton, CO, USA, pp 29–70Google Scholar
  77. Sterckeman T, Douay F, Baize D, Fourrier H, Proix N, Schvartz C, Carignan J (2006) Trace element distributions in soils developed in loess deposits from northern France. Eur J Soil Sci 57:392–410CrossRefGoogle Scholar
  78. Sterret SB, Chaney RL, Gifford CH, Mielke HW (1996) Influence of fertilizer and sewage sludge compost on yield and heavy metal accumulation by lettuce grown in urban soils. Environ Geochem Health 18:135–142CrossRefGoogle Scholar
  79. Stumm W, Morgan JJ (1996) Aquatic chemistry. Chemical equilibria and rates in natural waters. Wiley, New York, 3th ed., 1022 ppGoogle Scholar
  80. Sumner ME, Miller WP (1996) Cation-exchange capacity and exchange coefficients. P.1201-1230. In: Sparks DL (ed) Methods of soil analysis, part 3. Chemical methods. Soil Science Society of America Book Series Number 5, American Society of Agronomy, Madison, XIGoogle Scholar
  81. Taylor SR (1964) Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta 28:1273–1285CrossRefGoogle Scholar
  82. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental-crust. Geophysics 33:241–265CrossRefGoogle Scholar
  83. Thomas AL, Dambrine E, King D, Party JP, Probst A (1999) A spatial study of the relationships between streamwater acidity and geology, soils and relief (Vosges, northeastern France). J Hydrol 217:35–45CrossRefGoogle Scholar
  84. Veizer J (1983) Trace elements and isotopes in sedimentary carbonates. In: Reeder RJ (ed) Reviews in mineralogy, vol 11, Carbonates: mineralogy and chemistry. Mineralogical Society of, America, pp 265–300Google Scholar
  85. Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232CrossRefGoogle Scholar
  86. Xue H, Nhat PH, Gächter R, Hooda PS (2003) The transport of Cu and Zn from agricultural soils to surface water in a small catchment. Adv Environ Res 8:69–76CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Environmental Sciences, Copernicus Institute of Sustainable DevelopmentUtrecht UniversityUtrechtThe Netherlands
  2. 2.Deltares and TNO Geological Survey of the NetherlandsUtrechtNetherlands
  3. 3.Alterra Wageningen University & Research CentreWageningenThe Netherlands
  4. 4.Federal Institute for Geosciences and Natural Resources (BGR), Branch office BerlinBerlinGermany

Personalised recommendations