Journal of Soils and Sediments

, Volume 13, Issue 9, pp 1611–1625 | Cite as

Integrated toxicity evaluation of a pulp deposit using organisms of different trophic levels

  • Cornelia KienleEmail author
  • Miriam Langer-Jaesrich
  • Daniela Baumberger
  • Doris Hohmann
  • Sergio Santiago
  • Heinz-R. Köhler
  • Daniel Zürrer
  • Almut Gerhardt



In order to assess possible adverse effects originating from pulp deposits in a Swiss lake, a sediment quality triad approach was applied with chemical, ecotoxicological and ecological assessment methods.

Materials and methods

To obtain an integrative picture of the potential ecotoxicological effects on organisms of different trophic levels, four test procedures were applied. The acute effects of pulp deposit pore water on a decomposer, the amphipod Gammarus fossarum, were monitored. Chronic toxicity of the pore water was evaluated on primary producers via a growth inhibition test with unicellular green algae (Pseudokirchneriella subcapitata) and on secondary consumers in a reproduction test with the water flea Ceriodaphnia dubia. To evaluate the effects of the pulp deposit on sediment inhabitants, a whole-life-cycle test with the non-biting midge Chironomus riparius was undertaken. Chemical assessment included dissolved organic carbon, extractable organic halogenic compounds, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and heavy metals. The composition of the macrozoobenthos community was analysed in order to assess the ecological effects.

Results and discussion

G. fossarum displayed increased locomotor activity at 12.5% but not at 25% sample concentration during a short-time exposure of 20 h. Chronic effects compromised the reproduction and growth of C. dubia (lowest observed effect concentration, 12.5% sample concentration) with zero population growth in 100% pulp deposit pore water. In 100% pulp deposit, C. riparius exhibited increased mortality at 10 and 17 days after oviposition. Pulp deposits of 50% and 100% concentration caused a significantly lower emergence compared with the reference treatments (lake sediment and quartz sand). Additionally, the locomotor activity of chironomids decreased significantly in 25–100% pulp deposit. No chronic effects of pulp deposit pore water on algae photosynthesis and growth could be detected. The bioassay results were in accordance with an elevated content of PAHs, PCBs and metals in the pulp deposit. Significantly more organisms known to be tolerant to organic pollution were present within the macrozoobenthos community.


In general, for sediment inhabitants such as chironomids, the pulp deposit has to be classified toxic. In the present test setup, the toxicity of the pulp deposit was reflected better by the chronic test systems applied than by the acute ones. The applied testing framework could be a suitable tool to assess the risk of contaminated sites, and this information will help decide whether risk mitigation measures should be taken. In addition, with a similar approach, the success of any mitigation measures taken can be assessed.


Integrated assessment Sediment quality assessment Sediment triad Trophic levels 



The authors would like to thank Alois Zwyssig from Eawag, Dübendorf, Switzerland, who performed the fundamental work that has enabled us to conduct this study.

Supplementary material

11368_2013_733_MOESM1_ESM.docx (31 kb)
Online Resource 1 Data for 2 h photosynthesis and 24 h growth inhibition of Pseudokirchneriella subcapitata [%] exposed to different dilutions of the lake water, lake reference sediment pore water and pulp deposit pore water. On the right side of the table the values for the blank are given (n = 2 replicates) (DOCX 30.6 KB)
11368_2013_733_MOESM2_ESM.pdf (107 kb)
Online Resource 2 Data for locomotor and ventilatory activity [%] of G. fossarum after 2 and 20 h exposure to different dilutions of lake reference sediment pore water and pulp deposit pore water (n = 5 individuals per treatment) (PDF 107 kb)
11368_2013_733_MOESM3_ESM.pdf (166 kb)
Online Resource 3 Data for population growth of C. dubia after 8 days exposure to three different samples and sample dilutions (shown in % relative to control). n = 11–14 replicates per treatment each with one adult C. dubia) (PDF 166 kb)
11368_2013_733_MOESM4_ESM.pdf (96 kb)
Online Resource 4 Data for average survival [%] of C. riparius exposed to different sediments and sediment dilutions 10 and 17 days after oviposition. n = 4 replicates per treatment each with 33 larvae, lake reference sediment with n = 8 replicates (PDF 96 kb)
11368_2013_733_MOESM5_ESM.pdf (106 kb)
Online Resource 5 Data for locomotor and ventilatory activity [%] of C. riparius 17 days after oviposition exposed to three different sediments and sediment dilutions during 2 h of behaviour measurement. n = 11 larvae per treatment, lake reference sediment with n = 28 larvae) (PDF 106 kb)
11368_2013_733_MOESM6_ESM.docx (31 kb)
Online Resource 6 Data for mean cumulative number of emerged Chironomus riparius imagos [%] exposed to different sediments and sediment dilutions. n = 4 replicates per treatment each with 33 larvae, lake reference sediment with n = 8 replicates) (DOCX 31.4 KB)
11368_2013_733_MOESM7_ESM.docx (29 kb)
Online Resource 7 Emerged Chironomus riparius imagos [%] exposed to different sediments and sediment dilutions at test end (day 33) (n = 4 replicates per treatment each with 33 larvae, lake reference sediment with n = 8 replicates) (DOCX 28.6 KB)
11368_2013_733_MOESM8_ESM.pdf (209 kb)
Online Resource 8 Number of benthos organisms for different taxonomic groups per kilogram of sediment (dry weight) in the lake reference sediment (a) and the pulp deposit (b) determined in eight replicates each and extrapolated to 1 kg of sediment (PDF 209 kb)


  1. AFNOR (2000) Water quality—determination of chronic toxicity to Ceriodaphnia dubia in 7 days. Population growth inhibition test. AFNOR NF T 90–376, Saint Denis: Association Française de Normalisation, France, 18 ppGoogle Scholar
  2. Ahlf W (1995) Biotests an Sedimenten. In: Steinberg C, Bernhardt H, Klappner H (eds) Handbuch Angewandte Limnologie Teil Aquatische Ökotoxikologie. ecomed, Landsberg, Germany, pp 1–43Google Scholar
  3. Aschacher GP (1992) AOX and toxicity. Holzforsch Holzverw 6:101–103Google Scholar
  4. Bailey HC, Young L (1997) A comparison of the results of freshwater aquatic toxicity testing of pulp and paper mill effluents. In: Hall ER, Colodey AG (eds) Proceedings of the 5th IAWQ International Symposium on Forest Industry Wastewaters. Vancouver, Canada, pp 305–313Google Scholar
  5. Baird DJ, Burton GA, Culp JM, Maltby L (2007) Summary and recommendations from a SETAC Pellston workshop on in situ measures of ecological effects. Integr Environ Assess Manag 3:275–278CrossRefGoogle Scholar
  6. Beitinger TL (1990) Behavioral reactions for the assessment of stress in fishes. J Great Lakes Res 16:495–528CrossRefGoogle Scholar
  7. Bertoletti E, Araujo RPA, Zagatto PA, Gherardi-Goldstein E (1988) Toxicity evaluation of paper mill effluents. Water Sci Technol 20:191Google Scholar
  8. Burton GA (2003) Assessment of in situ stressors and sediment toxicity in the Lower Housatonic River. Institute for Environmental Quality, Dayton, Ohio, USA, 127 ppGoogle Scholar
  9. Casserly DM, Davis EM, Downs TD, Guthrie RK (1983) Sorption of organics by Selenastrum capricornutum. Water Res 17:1591–1594CrossRefGoogle Scholar
  10. Chapman PM (1986) Sediment quality criteria from the sediment quality triad: an example. Environ Toxicol Chem 5:957–964CrossRefGoogle Scholar
  11. Chapman PM, Hollert H (2006) Should the sediment quality triad become a tetrad, a pentad, or possibly even a hexad? J Soils Sediments 6:4–8CrossRefGoogle Scholar
  12. Chapman PM, Power EA, Burton GA (1992) Integrative assessments in aquatic ecosystems. In: Burton GA (ed) Sediment toxicity assessment. Lewis, Boca Raton, USA, pp 313–340Google Scholar
  13. Clements WH, Cherry DS, Cairns J Jr (1989) The influence of copper exposure on predator–prey interactions in aquatic insect communities. Freshwater Biol 21:483–488CrossRefGoogle Scholar
  14. Costan G, Bermingham N, Blaise C, Ferard JF (1993) Potential ecotoxic effects probe (PEEP): a novel index to assess and compare the toxic potential of industrial effluents. Environ Toxicol Water Qual 8:115–140CrossRefGoogle Scholar
  15. Culp JM, Cash KJ, Glozier NE, Brua RB (2003) Effects of pulp mill effluent on benthic assemblages in mesocosms along the Saint John River, Canada. Environ Toxicol Chem 22:2916–2925CrossRefGoogle Scholar
  16. de Deckere E, de Cooman W, Leloup V, Meire P, Schmitt C, von der Ohe PC (2011) Development of sediment quality guidelines for freshwater ecosystems. J Soils Sediments 11:504–517CrossRefGoogle Scholar
  17. De Lange HJ, Noordoven W, Murk AJ, Lürling M, Peeters ETHM (2006a) Behavioural responses of Gammarus pulex (Crustacea, Amphipoda) to low concentrations of pharmaceuticals. Aquat Toxicol 78:209–216CrossRefGoogle Scholar
  18. De Lange HJ, Sperber V, Peeters ETHM (2006b) Avoidance of polycyclic aromatic hydrocarbon-contaminated sediments by the freshwater invertebrates Gammarus pulex and Asellus aquaticus. Environ Toxicol Chem 25:452–457CrossRefGoogle Scholar
  19. DeGraeve GM, Cooney JD, Marsh BH, Pollock TL, Reichenbach NG (1992) Variability in the performance of the 7-d Ceriodaphnia dubia survival and reproduction test: an intra- and interlaboratory study. Environ Toxicol Chem 11:851–866Google Scholar
  20. Deutsches Institut für Normung (1989) Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung; Schlamm und Sedimente (Gruppe S); Bestimmung von ausblasbaren und extrahierbaren, organisch gebundenen Halogenen. DIN 38414–17, 17 ppGoogle Scholar
  21. Deutsches Institut für Normung (2005) Charakterisierung von Abfällen-Bestimmung des Gehalts an Kohlenwasserstoffen von C10 bis C40 mittels Gaschromatographie; Deutsche Fassung EN 14039:2004. DIN EN 14039, 24 ppGoogle Scholar
  22. Drummond RA, Russom CL (1990) Behavioral toxicity syndromes: a promising tool for assessing toxicity mechanisms in juvenile fathead minnows. Environ Toxicol Chem 9:37–46CrossRefGoogle Scholar
  23. Emmanuel E, Keck G, Blanchard J-M, Vermande P, Perrodin Y (2004) Toxicological effects of disinfections using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater. Environ Int 30:891–900CrossRefGoogle Scholar
  24. EPA (1996a) EPA Method 8082: Polychlorinated biphenyls (PCBs) by gas chromatography, CD-ROM 8082, Revision 0. December 1996, 56 pp.
  25. EPA (1996b) EPA Method 8270C: Semivolatile organic compounds by gas chromatography/mass spectrometry (GC/MS), CD-ROM 8270C, Revision 3. December 1996, 72 pp.
  26. EPA (2002) EPA-821-R-02-013: Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. Washington, DC, USA, 335 ppGoogle Scholar
  27. Escher BI, Bramaz N, Quayle P, Rutishauser S, Vermeirssen ELM (2008) Monitoring of the ecotoxicological hazard potential by polar organic micropollutants in sewage treatment plants and surface waters using a mode-of-action based test battery. J Environ Monit 10:622–631CrossRefGoogle Scholar
  28. Finger SE, Little EF, Henry MG, Fairchild JF, Boyle TP (1985) ASTM STP 865: Comparison of laboratory and field assessment of fluorene—part I: effects of fluorene on the survival, growth, reproduction, and behavior of aquatic organisms in laboratory tests. In: Boyle TP (ed) Validation and predictability of laboratory methods for assessing the fate and effects of contaminants in aquatic ecosystems. American Society for Testing and Materials, Philadelphia, Pennsylvania, USA, pp 120–133CrossRefGoogle Scholar
  29. Gala WR, Giesy JP (1992) Photoinduced toxicity of anthracene to the green alga, Selenastrum capricornutum. Arch Environ Contam Toxicol 23:316–323CrossRefGoogle Scholar
  30. Gellert G (2000) Relationship between summarizing chemical parameters like AOX, TOC, TNb, and toxicity tests for effluents from the chemical production. Bull Environ Contam Toxicol 65:508–513CrossRefGoogle Scholar
  31. Gerbersdorf SU, Hollert H, Brinkmann M, Wieprecht S, Schüttrumpf H, Manz W (2011) Anthropogenic pollutants affect ecosystem services of freshwater sediments: the need for a "triad plus x" approach. J Soils Sediments 11:1099–1114CrossRefGoogle Scholar
  32. Gerhardt A (1999) Recent trends in online biomonitoring for water quality control. In: Gerhardt A (ed) Biomonitoring of polluted water. Trans Tech, Zürich, Switzerland, pp 95–118Google Scholar
  33. Gerhardt A (2007) Aquatic behavioral ecotoxicology—prospects and limitations. Hum Ecol Risk Assess 13:481–491CrossRefGoogle Scholar
  34. Gerhardt A, Carlsson A, Ressemann C, Stich KP (1998) New online biomonitoring system for Gammarus pulex (L.) (Crustacea): in situ test below a copper effluent in south Sweden. Environ Sci Technol 32:150–156CrossRefGoogle Scholar
  35. Gerhardt A, de Bisthoven LJ, Penders E (2003) Quality control of drinking water from the River Rhine with the multispecies freshwater biomonitor. Aquat Ecosyst Health 6:159–166CrossRefGoogle Scholar
  36. Gerhardt A, Svensson E, Clostermann M, Fridlund B (1994) Monitoring of behavioral patterns of aquatic organisms with an impedance conversion technique. Environ Int 20:209–219CrossRefGoogle Scholar
  37. Glöer P, Meier-Brock C, Ostermann O (1992) Süsswassermollusken. Deutscher Jugendbund für Naturbeobachtung, Hamburg, GermanyGoogle Scholar
  38. Hecker M, Hollert H (2009) Effect-directed analysis (EDA) in aquatic ecotoxicology: state of the art and future challenges. Environ Sci Pollut Res 16:607–613CrossRefGoogle Scholar
  39. Hellou J (2011) Behavioural ecotoxicology, an "early warning" signal to assess environmental quality. Environ Sci Pollut Res 18:1–11CrossRefGoogle Scholar
  40. Hellou J, Cook A, Lalonde B, Walker P, Dunphy K, MacLeod S (2009) Escape and survival of Corophium volutator and Ilyanassa obsoleta exposed to freshwater and chlorothalonil. J Environ Sci Heal A 44:778–790CrossRefGoogle Scholar
  41. Hollert H, Ernst M, Ahlf W, Dürr M, Erdinger L, Grund S, Keiter S, Kosmehl T, Seiler TB, Wölz J, Braunbeck T (2009) Strategies for assessing sediment toxicity—a review. Strategien zur Sedimentbewertung-Ein Überblick 21:160–176Google Scholar
  42. International Organization for Standardization (1996) ISO 6468:1996: Water quality-determination of certain organochlorine insecticides, polychlorinated biphenyls and chlorobenzenes—gas chromatographic method after liquid–liquid extraction. 24 ppGoogle Scholar
  43. International Organization for Standardization (2004) ISO 16703:2004: Soil quality-determination of content of hydrocarbon in the range C10 to C40 by gas chromatography. 21 ppGoogle Scholar
  44. International Organization for Standardization (2008) ISO 20665:2008: Water quality-determination of chronic toxicity to Ceriodaphnia dubia. 21 ppGoogle Scholar
  45. Karaman G, Pinkster S (1977) Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea, Amphipoda). I. Gammarus pulex group and related species. Bijdragen tot de Dierkunde 47:1–97Google Scholar
  46. Kersten A, Hamm U, Schabel S, Öller HJ (2006) Analysis of paper mill effluents in reference to stricter EU requirements. Analyse von Papierfabrikationsabwässern vor dem Hintergrund verschärfter EU-Anforderungen, pp 90–99Google Scholar
  47. Landis GW, Chapman MP (2011) Well past time to stop using NOELs and LOELs. Integr Environ Assess Manag 7:vi–viiCrossRefGoogle Scholar
  48. Langer-Jaesrich M, Köhler HR, Gerhardt A (2010a) Assessing toxicity of the insecticide thiacloprid on Chironomus riparius (Insecta: Diptera) using multiple end points. Arch Environ Contam Toxicol 58:963–972CrossRefGoogle Scholar
  49. Langer-Jaesrich M, Kienle C, Köhler H-R, Gerhardt A (2010b) Impairment of trophic interactions between zebrafish (Danio rerio) and midge larvae (Chironomus riparius) by chlorpyrifos. Ecotoxicology 19:1294–1301CrossRefGoogle Scholar
  50. Leversee GJ, Landrum PF, Giesy JP, Fannin T (1983) Humic acids reduce bioaccumulation of some polycyclic aromatic hydrocarbons. Can J Fish Aquat Sci 40(suppl 2):63–69CrossRefGoogle Scholar
  51. Lu PY, Metcalf RL, Plummer N, Mandel D (1977) The environmental fate of three carcinogens: benzo(a)pyrene, benzidine, and vinyl chloride evaluated in laboratory model ecosystems. Arch Environ Contam Toxicol 6:129–142CrossRefGoogle Scholar
  52. Lynch M (1978) Complex interactions between natural coexploiters—Daphnia and Ceriodaphnia. Ecology 59:552–564CrossRefGoogle Scholar
  53. MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31CrossRefGoogle Scholar
  54. Mayer FL Jr, Ellersieck MR (1986) Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals. US Department of the Interior, Fish and Wildlife Service, Washington DC, USA, 439 ppGoogle Scholar
  55. Mayer P, Halling-Sorensen B, Sijm DTHM, Nyholm N (1998) Toxic cell concentrations of three polychlorinated biphenyl congeners in the green alga Selenastrum capricornutum. Environ Toxicol Chem 17:1848–1851Google Scholar
  56. McCahon CP, Pascoe D (1988) Use of Gammarus pulex (L.) in safety evaluation tests: culture and selection of a sensitive life stage. Ecotoxicol Environ Saf 15:245–252CrossRefGoogle Scholar
  57. McKinney AD, Wade DC (1996) Comparative response of Ceriodaphnia dubia and juvenile Anodonta imbecillis to pulp and paper mill effluents discharged to the Tennessee River and its tributaries. Environ Toxicol Chem 15:514–517Google Scholar
  58. Murray W (1992) Pulp and paper: the reduction of toxic effluents. Government of Canada, Science and Technology Division, Ottawa, Canada, 23 ppGoogle Scholar
  59. Musko IB, Meinel W, Krause R, Barlas M (1990) The impact of Cd and different pH on the amphipod Gammarus fossarum Koch (Crustacea: Amphipoda). Comp Biochem Phys C 96:11–16CrossRefGoogle Scholar
  60. Nakari T, Huhtala S (2008) Comparison of toxicity of congener-153 of PCB, PBB, and PBDE to Daphnia magna. Ecotox Environ Saf 71:514–518Google Scholar
  61. Niederlehner BR (1984) A comparison of techniques for estimating the hazard of chemicals in the aquatic environment. MSc thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 290 ppGoogle Scholar
  62. Novak MA, Reilly AA, Bush B, Shane L (1990) In situ determination of PCB congener-specific 1st order absorption desorption rate constants using Chironomus-tentans larvae (Insecta, Diptera, Chironomidae). Water Res 24:321–327Google Scholar
  63. O’Connor BI, Kovacs TG, Voss RH, Martel PH (1993) A study of the relationship between laboratory bioassay response and AOX content for pulp mill effluents. J Pulp Pap Sci 19:33–39Google Scholar
  64. OECD (2004a) OECD Guidelines for the testing of chemicals 218: sediment–water chironomid toxicity test using spiked sediment. 21 ppGoogle Scholar
  65. OECD (2004b) OECD Guidelines for the testing of chemicals 219: sediment–water chironomid toxicity test using spiked water. 21 ppGoogle Scholar
  66. Ong SK, DeGraeve GM, Silva-Wilkinson RA, McCabe JW, Smith WL (1996) Toxicity and bioconcentration potential of adsorbable organic halides from bleached laundering in municipal wastewater. Environ Toxicol Chem 15:138–143CrossRefGoogle Scholar
  67. Oris JT, Winner RW, Moore MV (1991) A four-day survival and reproduction toxicity test for Ceriodaphnia dubia. Environ Toxicol Chem 10:217–224Google Scholar
  68. Pascoe D, Williams KA, Green DWJ (1989) Chronic toxicity of cadmium to Chironomus riparius Meigen—effects upon larval development and adult emergence. Hydrobiologia 175:109–115CrossRefGoogle Scholar
  69. Pellinen J, Soimasuo R (1993) Toxicity of sediments polluted by the pulp and paper industry to a midge (Chironomus riparius Meigen). Sci Total Environ 134(suppl 2):1247–1256CrossRefGoogle Scholar
  70. Postma JF, Vankleunen A, Admiraal W (1995) Alterations in life-history traits of Chironomus riparius (Diptera) obtained from metal-contaminated rivers. Arch Environ Contam Toxicol 29:469–475CrossRefGoogle Scholar
  71. Rosa R, Moreira-Santos M, Lopes I, Silva L, Rebola J, Mendonça E, Picado A, Ribeiro R (2010) Comparison of a test battery for assessing the toxicity of a bleached-kraft pulp mill effluent before and after secondary treatment implementation. Environ Monit Assess 161:439–451CrossRefGoogle Scholar
  72. Sanders HO, Chandler JH (1972) Biological magnification of a polychlorinated biphenyl (Aroclor 1254) from water by aquatic invertebrates. Bull Environ Contam Toxicol 7:257–263CrossRefGoogle Scholar
  73. Sanz-Lazaro C, Marin A, Borredat M (2008) Toxicity studies of polynuclear aromatic hydrocarbons (PAHs) on European amphipods. Toxicol Mech Method 18:323–327CrossRefGoogle Scholar
  74. Schreiber U, Quayle P, Schmidt S, Escher BI, Mueller JF (2007) Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging. Biosens Bioelectron 22:2554–2563CrossRefGoogle Scholar
  75. Schuler LJ, Landrum PF, Lydy MJ (2004) Time-dependent toxicity of fluoranthene to freshwater invertebrates and the role of biotransformation on lethal body residues. Environ Sci Technol 38:6247–6255CrossRefGoogle Scholar
  76. Schweizerischer Bundesrat (1998) Verordnung über die Sanierung von belasteten Standorten (Altlasten-Verordnung, AltlV) vom 26. August 1998 (Stand am 1. August 2011), 20 ppGoogle Scholar
  77. Sibley PK, Legler J, Dixon DG, Barton DR (1997) Environmental health assessment of the benthic habitat adjacent to a pulp mill discharge. I. Acute and chronic toxicity of sediments to benthic macroinvertebrates. Arch Environ Contam Toxicol 32:274–284CrossRefGoogle Scholar
  78. Soeter A, Bakker F, Velthuis M, Verweij R, Hoitinga L, Marinkovic M, Kraak M, Breeuwer J (2010) The selective environment: genetic adaptation of the midge Chironomus riparius to metal pollution. Proc Neth Entomol Soc Meet 21:85–94Google Scholar
  79. Sofyan A, Price DJ, Birge WJ (2007) Effects of aqueous, dietary and combined exposures of cadmium to Ceriodaphnia dubia. Sci Total Environ 385:108–116CrossRefGoogle Scholar
  80. Sofyan A, Shaw JR, Birge WJ (2006) Metal trophic transfer from algae to cladocerans and the relative importance of dietary metal exposure. Environ Toxicol Chem 25:1034–1041CrossRefGoogle Scholar
  81. Stewart KM, Thompson RS (1995) Fluoranthene as a model toxicant in sediment studies with Chironomus riparius. J Aquat Ecosys Health 4:231–238CrossRefGoogle Scholar
  82. Studemann D, Landolt P, Sartori M, Hefti D, Tomka I (1992) Ephemeroptera Insecta Helvetica–Fauna. Schweizerische Entomologische Gesellschaft, Fribourg, 173 ppGoogle Scholar
  83. Van Dam RA, Harford AJ, Warne MSJ (2012) Time to get off the fence: the need for definitive international guidance on statistical analysis of ecotoxicity data. Integr Environ Assess Manag 8:242–245CrossRefGoogle Scholar
  84. Van der Heever JA, Grobbelaar JU (1996) The use of Selenastrum capricomutum growth potential as a measure of toxicity of a few selected compounds. Water SA 22:183–191Google Scholar
  85. Verrhiest G, Ciément B, Blake G (2001) Single and combined effects of sediment-associated PAHs on three species of freshwater macroinvertebrates. Ecotoxicology 10:363–372CrossRefGoogle Scholar
  86. Waringer J, Graf W (1997) Köcherfliegen (Trichoptera) Larven. Atlas der österreichischen Köcherfliegenlarven unter Einschluss der angrenzenden Gebiete. Facultas Verlag, pp 288Google Scholar
  87. Welton JS (1979) Life-history and production of the amphipod Gammarus pulex in a Dorset chalk stream. Freshw Biol 9:263–275CrossRefGoogle Scholar
  88. Wichard W, Arens W, Eisenbeis G (1995) Atlas zur Biologie der Wasserinsekten. Gustav Fischer, Stuttgart, Germany, 338 ppGoogle Scholar
  89. Wildhaber ML, Schmitt CJ (1998) Indices of benthic community tolerance in contaminated Great Lakes sediments: relations with sediment contaminant concentrations, sediment toxicity, and the sediment quality triad. Environ Monit Assess 49:23–49CrossRefGoogle Scholar
  90. Wildi E, Nagel R, Steinberg CEW (1994) Effects of pH on the bioconcentration of pyrene in the larval midge, Chironomus riparius. Water Res 28:2553–2559CrossRefGoogle Scholar
  91. Wolfram G, Höss S, Orendt C, Schmitt C, Adámek Z, Bandow N, Großschartner M, Kukkonen JVK, Leloup V, López Doval JC, Muñoz I, Traunspurger W, Tuikka A, Van Liefferinge C, von der Ohe PC, de Deckere E (2012) Assessing the impact of chemical pollution on benthic invertebrates from three different European rivers using a weight-of-evidence approach. Sci Total Environ 438:498–509CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cornelia Kienle
    • 1
    Email author
  • Miriam Langer-Jaesrich
    • 2
  • Daniela Baumberger
    • 1
  • Doris Hohmann
    • 3
  • Sergio Santiago
    • 4
  • Heinz-R. Köhler
    • 2
  • Daniel Zürrer
    • 5
    • 6
  • Almut Gerhardt
    • 1
  1. 1.Swiss Centre for Applied Ecotoxicology Eawag/EPFLDübendorfSwitzerland
  2. 2.Animal Physiological EcologyUniversity of TübingenTübingenGermany
  3. 3.Eawag Aquatic Research, Department of Aquatic EcologyKastanienbaumSwitzerland
  4. 4.Soluval SantiagoCouvetSwitzerland
  5. 5.CSD Engineers and Geologists LtdZürichSwitzerland
  6. 6.Baudirektion Kanton ZürichZurichSwitzerland

Personalised recommendations