Advertisement

Journal of Soils and Sediments

, Volume 13, Issue 6, pp 1012–1023 | Cite as

Effects of grazing on CO2 balance in a semiarid steppe: field observations and modeling

  • Xiaoming Kang
  • Yanbin Hao
  • Xiaoyong Cui
  • Huai Chen
  • Changsheng Li
  • Yichao Rui
  • Jianqing Tian
  • Paul Kardol
  • Lei Zhong
  • Jinzhi Wang
  • Yanfen Wang
SOILS, SEC 2 • GLOBAL CHANGE, ENVIRON RISK ASSESS, SUSTAINABLE LAND USE • RESEARCH ARTICLE

Abstract

Purpose

Carbon (C) dynamics in grassland ecosystem contributes to regional and global fluxes in carbon dioxide (CO2) concentrations. Grazing is one of the main structuring factors in grassland, but the impact of grazing on the C budget is still under debate. In this study, in situ net ecosystem CO2 exchange (NEE) observations by the eddy covariance technique were integrated with a modified process-oriented biogeochemistry model (denitrification–decomposition) to investigate the impacts of grazing on the long-term C budget of semiarid grasslands.

Materials and methods

NEE measurements were conducted in two adjacent grassland sites, non-grazing (NG) and moderate grazing (MG), during 2006–2007. We then used daily weather data for 1978–2007 in conjunction with soil properties and grazing scenarios as model inputs to simulate grassland productivity and C dynamics. The observed and simulated CO2 fluxes under moderate grazing intensity were compared with those without grazing.

Results and discussion

NEE data from 2-year observations showed that moderate grazing significantly decreased grassland ecosystem CO2 release and shifted the ecosystem from a negative CO2 balance (releasing 34.00 g C m−2) at the NG site to a positive CO2 balance (absorbing −43.02 g C m−2) at the MG site. Supporting our experimental findings, the 30-year simulation also showed that moderate grazing significantly enhances the CO2 uptake potential of the targeted grassland, shifting the ecosystem from a negative CO2 balance (57.08 ± 16.45 g C m−2 year−1) without grazing to a positive CO2 balance (−28.58 ± 14.60 g C m−2 year−1) under moderate grazing. The positive effects of grazing on CO2 balance could primarily be attributed to an increase in productivity combined with a significant decrease of soil heterotrophic respiration and total ecosystem respiration.

Conclusions

We conclude that moderate grazing prevails over no-management practices in maintaining CO2 balance in semiarid grasslands, moderating and mitigating the negative effects of global climate change on the CO2 balance in grassland ecosystems.

Keywords

Carbon budget DNDC Eddy covariance Grassland Grazing Soil heterotrophic respiration 

Notes

Acknowledgments

This study was supported by the National Science and technology support program of China (2012BAC19B04), the National Natural Science Foundation of China (grant no. 31170459 and no. 90711001), the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCXZ-EW-J-29) and the research program “Climate Change: Carbon Budget and Relevant Issues” of Chinese Academy of Sciences (grant no. XDA05050402). We thank two anonymous reviewers for their valuable comments and suggestions on an earlier version of the manuscript. We also would like to thank Jianwu Tang for his help.

References

  1. Allard V, Soussana JF, Falcimagne R, Berbigier P, Bonnefond JM, Ceschia E, D’hour P, Henault C, Laville P, Martin C, Pinares-Patino C (2007) The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O and CH4) of semi-natural grassland. Agr Ecosyst Environ 121:47–58CrossRefGoogle Scholar
  2. Anderson JM (1991) The effects of climate change on decomposition processes in grassland and coniferous forests. Ecol Appl 1:326–347CrossRefGoogle Scholar
  3. Aubinet M, Heinesch B, Longdoz B (2002) Estimation of the carbon sequestration by a heterogeneous forest: night flux corrections, heterogeneity of the site and inter-annual variability. Global Change Biol 8:1053–1071CrossRefGoogle Scholar
  4. Augustine DJ, McNaughton SJ (1998) Ungulate effects on the functional species composition of plant communities: herbivore selectivity and plant tolerance. J Wildlife Manage 62:1165–1183CrossRefGoogle Scholar
  5. Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, U KTP, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. B Am Meteorol Soc 82:2415–2434CrossRefGoogle Scholar
  6. Chen ZZ, Wang SP (2000) Chinese typical grassland ecosystem. Science, BeijingGoogle Scholar
  7. Cui J, Li C, Trettin C (2005a) Analyzing the ecosystem carbon and hydrologic characteristics of forested wetland using a biogeochemical process model. Global Change Biol 11:278–289CrossRefGoogle Scholar
  8. Cui X, Wang Y, Niu H, Wu J, Wang S, Schnug E, Rogasik J, Fleckenstein J, Tang Y (2005b) Effect of long-term grazing on soil organic carbon content in semiarid steppes in Inner Mongolia. Ecol Res 20:519–527CrossRefGoogle Scholar
  9. De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531CrossRefGoogle Scholar
  10. Di H, Cameron K, Shen JP, Winefield C, O’Callaghan M, Bowatte S, He JZ (2011) Methanotroph abundance not affected by applications of animal urine and a nitrification inhibitor, dicyandiamide, in six grazed grassland soils. J Soil Sediment 11:432–439CrossRefGoogle Scholar
  11. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agr Forest Meteorol 107:43–69CrossRefGoogle Scholar
  12. Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis KJ, Elbers JA, Goldstein AH, Grelle A, Granier A, Guomundsson J, Hollinger D, Kowalski AS, Katul G, Law BE, Malhi Y, Meyers T, Monson RK, Munger JW, Oechel W, Paw KT, Pilegaard K, Rannik U, Rebmann C, Suyker A, Valentini R, Wilson K, Wofsy S (2002) Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agr Forest Meteorol 113:53–74CrossRefGoogle Scholar
  13. Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Tans P (1998) A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282:442–446CrossRefGoogle Scholar
  14. Frank AB (2002) Carbon dioxide fluxes over a grazed prairie and seeded pasture in the Northern Great Plains. Environ Pollut 116:397–403CrossRefGoogle Scholar
  15. Frank AB, Sims PL, Bradford JA, Mielnick PC, Dugas WA, Mayeux HS (2000) Carbon dioxide fluxes over three Great Plains grasslands. In: Kimble JM, Lal R, Follet RF (eds) The potential of U.S. grazing lands to sequester carbon and mitigate the greenhouse effect. Lewis, New York, pp 167–188Google Scholar
  16. Giltrap DL, Li CS, Saggar S (2010) DNDC: a process-based model of greenhouse gas fluxes from agricultural soils. Agr Ecosyst Environ 136:292–300CrossRefGoogle Scholar
  17. Hafner S, Unteregelsbacher S, Seeber E, Lena B, Xu X, Li X, Guggenberger G, Miehe G, Kuzyakov Y (2012) Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling. Global Change Biol 18:528–538CrossRefGoogle Scholar
  18. Hao YB, Wang YF, Huang XZ, Cui XY, Zhou XQ, Wang SP, Niu HS, Jiang GM (2007) Seasonal and interannual variation in water vapor and energy exchange over a typical steppe in Inner Mongolia, China. Agr Forest Meteorol 146:57–69CrossRefGoogle Scholar
  19. Hao YB, Wang YF, Mei XR, Huang XZ, Cui XY, Zhou XQ, Niu HS (2008) CO2, H2O and energy exchange of an Inner Mongolia steppe ecosystem during a dry and wet year. Acta Oecol 33:133–143CrossRefGoogle Scholar
  20. Hao YB, Cui XY, Wang YF, Mei XR, Kang XM, Wu N, Luo P, Zhu D (2011) Predominance of precipitation and temperature controls on ecosystem CO2 exchange in Zoige Alpine wetlands of Southwest China. Wetlands 31(2):413–422CrossRefGoogle Scholar
  21. Hoffmann C, Funk R, Li Y (2008) Effect of grazing on wind driven carbon and nitrogen ratios in the grasslands of Inner Mongolia. Catena 75(2):182–190CrossRefGoogle Scholar
  22. Hunt JE, Kelliher FM, McSeveny TM, Ross DJ, Whitehead D (2004) Long-term carbon exchange in a sparse, seasonally dry tussock grassland. Global Change Biol 10:1785–1800CrossRefGoogle Scholar
  23. IPCC (2007) Climate change 2007: the physical science basis. contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  24. Jaksic V, Kiely G, Albertson J, Oren R, Katul G, Leahy P, Byrne KA (2006) Net ecosystem exchange of grassland in contrasting wet and dry years. Agric For Meteorol 139:323–334CrossRefGoogle Scholar
  25. Kang X, Hao Y, Li C, Cui X, Wang J, Rui Y, Niu H, Wang Y (2011) Modeling impacts of climate change on carbon dynamics in a steppe ecosystem in Inner Mongolia, China. J Soil Sediments 11(4):562–576CrossRefGoogle Scholar
  26. Kljun N, Calanca P, Rotachhi MW, Schmid HP (2004) A simple parameterisation for flux footprint predictions. Boundary-Layer Meteorol 112:503–523CrossRefGoogle Scholar
  27. Kölbl A, Steffens M, Wiesmeier M, Hoffmann C, Funk R, Krümmelbein J, Reszkowska A, Zhao Y, Peth S, Horn R, Giese M, Kögel-Knabner I (2011) Grazing changes topography-controlled topsoil properties and their interaction on different spatial scales in a semi-arid grassland of Inner Mongolia, PR China. Plant Soil 340:35–58CrossRefGoogle Scholar
  28. Kurbatova J, Li CS, Varlagin A, Xiao XM, Vygodskaya N (2008) Modeling carbon dynamics in two adjacent spruce forests with different soil conditions in Russia. Biogeosciences 5:969–980CrossRefGoogle Scholar
  29. Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450CrossRefGoogle Scholar
  30. Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22CrossRefGoogle Scholar
  31. Lang M, Cai Z, Chang S (2011) Effects of land use type and incubation temperature on greenhouse gas emissions from Chinese and Canadian soils. J Soils Sediments 11:15–24CrossRefGoogle Scholar
  32. Lecain DR, Morgan JA, Schuman GE, Reeder JD, Hart RH (2000) Carbon exchange rates in grazed and ungrazed pastures of Wyoming. J Range Manage 53:199–206CrossRefGoogle Scholar
  33. LeCain DR, Morgan JA, Schuman GE, Reeder JD, Hart RH (2002) Carbon exchange and species composition of grazed pastures and exclosures in the shortgrass steppe of Colorado. Agr Ecosyst Environ 93:421–435CrossRefGoogle Scholar
  34. Leriche H, LeRoux X, Gignoux J, Tuzet A, Fritz H, Abbadie L, Loreau M (2001) Which functional processes control the short-term effect of grazing on net primary production in grasslands? Oecologia 129:114–124CrossRefGoogle Scholar
  35. Li CS, Frolking S, Frolking TA (1992a) A model of nitrous-oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. J Geophys Res 97:9759–9776CrossRefGoogle Scholar
  36. Li CS, Frolking S, Frolking TA (1992b) A model of nitrous-oxide evolution from soil driven by rainfall events: 2. Model applications. J Geophys Res 97:9777–9783CrossRefGoogle Scholar
  37. Li C, Narayanan V, Harriss RC (1996) Model estimates of nitrous oxide emissions from agricultural lands in the United States. Global Biogeochem Cy 10:297–306CrossRefGoogle Scholar
  38. Li SG, Asanuma J, Eugster W, Kotani A, Liu JJ, Urano T, Oikawa T, Davaa G, Oyunbaatar D, Sugita M (2005) Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Global Change Biol 11:1941–1955CrossRefGoogle Scholar
  39. Li ZQ, Yu GR, Xiao XM, Li YN, Zhao XQ, Ren CY, Zhang LM, Fu YL (2007) Modeling gross primary production of alpine ecosystems in the Tibetan Plateau using MODIS images and climate data. Remote Sens Environ 107:510–519CrossRefGoogle Scholar
  40. Liu N, Zhang Y, Chang S, Kan H, Lin L (2012) Impact of grazing on soil carbon and microbial biomass in typical steppe and desert steppe of Inner Mongolia. PLoS One 7:e36434CrossRefGoogle Scholar
  41. McNaughton SJ (1983) Compensatory plant growth as a response to herbivory. Oikos 40:329–336CrossRefGoogle Scholar
  42. Mendez MJ, Oro LD, Panebianco JE, Colazo JC, Buschiazzo DE (2006) Organic carbon and nitrogen in soils of semiarid Argentina. J Soil Water Conserv 61:230–235Google Scholar
  43. Nieveen JP, Campbell DI, Schipper LA, Blair IJ (2005) Carbon exchange of grazed pasture on a drained peat soil. Global Change Biol 11:607–618CrossRefGoogle Scholar
  44. Piao S, Fang J, Zhou L, Tan K, Tao S (2007) Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Global Biogeochem Cy 21:GB2002Google Scholar
  45. Risch A, Jurgensen M, Frank D (2007) Effects of grazing and soil micro-climate on decomposition rates in a spatio-temporally heterogeneous grassland. Plant Soil 298:191–201CrossRefGoogle Scholar
  46. Rui Y, Wang S, Xu Z, Wang Y, Chen C, Zhou X, Kang X, Lu S, Hu Y, Lin Q (2011) Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai–Tibet Plateau in China. J Soils Sediments 11(6):903–914CrossRefGoogle Scholar
  47. Schimel DS (1995) Terrestrial ecosystems and the carbon-cycle. Global Change Biol 1:77–91CrossRefGoogle Scholar
  48. Schönbach P, Wan H, Gierus M, Bai Y, Müller K, Lin L, Susenbeth A, Taube F (2011) Grassland responses to grazing: effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem. Plant Soil 340:103–115CrossRefGoogle Scholar
  49. Schönbach P, Wolf B, Dickhöfer U, Wiesmeier M, Chen W, Wan HW, Gierus M, Butterbach-Bahl K, Kögel-Knabner I, Susenbeth A, Zheng XH, Traube F (2012) Grazing effects on the greenhouse gas balance of a temperate steppe ecosystem. Nutr Cycl Agroecosys 93(3):357–371CrossRefGoogle Scholar
  50. Soussana JF, Allard V, Pilegaard K, Ambus P, Ammann C, Campbell C, Ceschia E, Clifton-Brown J, Czobel S, Domingues R, Flechard C, Fuhrer J, Hensen A, Horvath L, Jones M, Kasper G, Martin C, Nagy Z, Neftel A, Raschi A, Baronti S, Rees RM, Skiba U, Stefani P, Manca G, Sutton M, Tuba Z, Valentini R (2007) Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agr Ecosyst Environ 121:121–134CrossRefGoogle Scholar
  51. Steffens M, Kölbl A, Schörk E, Gschrey B, Kögel-Knabner I (2011) Distribution of soil organic matter between fractions and aggregate size classes in grazed semiarid steppe soil profiles. Plant Soil 338:63–81CrossRefGoogle Scholar
  52. Sun D, Wesche K, Chen D, Zhang S, Wu G, Du G (2011) Comerford N (2011) Grazing depresses soil carbon storage through changing plant biomass and composition in a Tibetan alpine meadow. Plant Soil Environ 57:271–278Google Scholar
  53. Wan S, Luo Y (2003) Substrate regulation of soil respiration in a tallgrass prairie: results of a clipping and shading experiment. Global Biogeochem Cy 17:1054CrossRefGoogle Scholar
  54. Wang JW, Cai C (1988) Studies on genesis, types and characteristics of the soils of the Xilin River Basin. Inner Mongolia Grassland Ecosystem Research Station (ed). Res Grassl Ecosys 3:23–83Google Scholar
  55. Wang SP, Li YH (1997) The influence of different stocking rates and grazing periods on the amount of feces and its relationship to DM intake and digestibility of grazing sheep. Acta Zoonutri Sin 9:47–54Google Scholar
  56. Wang SP, Wang YF (2001) Study on over-compensation growth of cleistogenes squarrosa population in inner Mongolia steppe. Acta Botanica Sin 43:6Google Scholar
  57. Wang Y, Zhou G, Jia B (2008) Modeling SOC and NPP responses of meadow steppe to different grazing intensities in Northeast China. Ecol Modelling 217:72–78CrossRefGoogle Scholar
  58. Wayne Polley H, Frank AB, Sanabria J, Phillips RL (2008) Interannual variability in carbon dioxide fluxes and flux-climate relationships on grazed and ungrazed northern mixed-grass prairie. Global Change Biol 14:1620–1632CrossRefGoogle Scholar
  59. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water-vapor transfer. Q J R Meteorol Soc 106:85–100CrossRefGoogle Scholar
  60. Wiesmeier M, Barthold F, Blank B, Kögel-Knabner I (2011) Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem. Plant Soil 340:7–24CrossRefGoogle Scholar
  61. Wiesmeier M, Kreyling O, Steffens M, Schoenbach P, Wang HW, Gierus M, Taube F, Kölbl A, Kögel-Knabner I (2012a) Short-term degradation of semiarid grasslands-results from a controlled-grazing experiment in Northern China. J Plant Nutr Soil Sc 175:434–442CrossRefGoogle Scholar
  62. Wiesmeier M, Steffens M, Mueller C, Kölbl A, Reszkowska A, Peth S, Horn R, Kögel-Knabner I (2012b) Aggregate stability and physical protection of soil organic carbon in semi-arid steppe soils. Euro J Soil Sc 63:22–31CrossRefGoogle Scholar
  63. Wu H, Wiesmeier M, Yu Q, Steffens M, Han X, Kögel-Knabner I (2012) Labile organic C and N mineralization of soil aggregate size classes in semiarid grasslands as affected by grazing management. Biol Fert Soils 48(3):305CrossRefGoogle Scholar
  64. Xiao XM, Wang YF, Jiang S, Ojima DS, Bonham CD (1995) Interannual variation in the climate and above-ground biomass of Leymus chinense steppe and Stipa grandis steppe in the Xilin river basin, Inner Mongolia, China. J Arid Environ 31:283–299CrossRefGoogle Scholar
  65. Xu-Ri WYS, Zheng XH, Ji BM, Wang MX (2003) A comparison between measured and modeled N2O emissions from Inner Mongolian semi-arid grassland. Plant Soil 255:513–528CrossRefGoogle Scholar
  66. Zhang Y, Grant RF, Flanagan LB, Wang S, Verseghy DL (2005) Modelling CO2 and energy exchanges in a northern semiarid grassland using the carbon- and nitrogen-coupled Canadian Land Surface Scheme (C-CLASS). Ecol Modelling 181:591–614CrossRefGoogle Scholar
  67. Zhao H-L, Yi X-Y, Zhou R-L, Zhao X-Y, Zhang T-H, Drake S (2006) Wind erosion and sand accumulation effects on soil properties in Horqin Sandy Farmland, Inner Mongolia. Catena 65:71–79CrossRefGoogle Scholar
  68. Zhao Y, Peth S, Reszkowska A, Gan L, Krümmelbein J, Peng X, Horn R (2011) Response of soil moisture and temperature to grazing intensity in a Leymus chinensis steppe, Inner Mongolia. Plant Soil 340:89–102CrossRefGoogle Scholar
  69. Zhou X, Wan S, Luo Y (2007) Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biol 13:761–775Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiaoming Kang
    • 1
  • Yanbin Hao
    • 1
  • Xiaoyong Cui
    • 1
  • Huai Chen
    • 2
  • Changsheng Li
    • 3
  • Yichao Rui
    • 4
  • Jianqing Tian
    • 5
  • Paul Kardol
    • 6
  • Lei Zhong
    • 1
  • Jinzhi Wang
    • 7
  • Yanfen Wang
    • 1
  1. 1.College of Life SciencesUniversity of Chinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
  3. 3.Institute for the Study of Earth, Ocean and SpaceUniversity of New HampshireDurhamUSA
  4. 4.Environmental Futures CentreGriffith UniversityBrisbaneAustralia
  5. 5.State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  6. 6.Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesUmeåSweden
  7. 7.Chinese Research Academy of Environmental SciencesBeijingPeople’s Republic of China

Personalised recommendations