Advertisement

Journal of Soils and Sediments

, Volume 13, Issue 4, pp 801–815 | Cite as

Fingerprinting sediment sources in the outlet reservoir of a hilly cultivated catchment in Tunisia

  • Abir Ben Slimane
  • Damien Raclot
  • Olivier Evrard
  • Mustapha Sanaa
  • Irène Lefèvre
  • Mehdi Ahmadi
  • Mouna Tounsi
  • Cornelia Rumpel
  • Abdallah Ben Mammou
  • Yves Le Bissonnais
SEDIMENTS, SEC 3 • HILLSLOPE AND RIVER BASIN SEDIMENT DYNAMICS • RESEARCH ARTICLE

Abstract

Purpose

Approximately 74 % of agricultural soils in Tunisia are affected by water erosion, leading to the siltation of numerous human-made reservoirs and therefore a loss of water storage capacity. The objective of this study was to propose a methodology for estimating the relative contributions of gully/channel bank erosion and surface topsoil erosion to the sediment accumulated in small reservoirs.

Materials and methods

We tested an approach based on the sediment fingerprinting technique for sediments collected from a reservoir (which has been in operation since 1994) at the outlet of a catchment (Kamech, 2.63 km2). Sampling concentrated on the soil surface (in both cropland and grassland), gullies and channel banks. A total of 17 sediment cores were collected along a longitudinal transect of the Kamech reservoir to investigate the origin of the sediment throughout the reservoir. Radionuclides (particularly caesium-137, 137Cs) and nutrients (total phosphorus, total nitrogen and total organic carbon (TOC)) were analysed as potential tracers.

Results and discussion

The applications of a mixing model with 137Cs alone or 137Cs and TOC provided very similar results: The dominant source of sediment was surface erosion, which was responsible for 80 % of the total erosion within the Kamech catchment. Additionally, we showed that the analysis of a single composite core provided information on the sediment origin that was consistent with the analysis of all sediment layers in the core. We demonstrated the importance of the core sampling location within the reservoir for obtaining reliable information regarding sediment sources and the dominant erosion processes.

Conclusions

The dominance of surface erosion processes indicates that conservation farming practices are required to mitigate erosion in the agricultural Kamech catchment. Based on the results from 17 sediment cores, guidelines regarding the number and location of sampling cores to be collected for sediment fingerprinting are proposed. We showed that the collection of two cores limited the sediment source apportionment uncertainty due to the core sampling scheme to <10 %.

Keywords

Catchment Core sampling strategy Fingerprinting technique Gully erosion Reservoir Rill and interrill erosion Source sediment 

Notes

Acknowledgements

This study was financially supported by the IRD-DSF, SCAC of French embassy and a CNRS/DGRS exchange agreement (No. 24443) between France and Tunisia. This study was performed within the framework of the OMERE Observatory funded by INRA and IRD. We thank three anonymous reviewers for their insightful comments, which greatly improved this manuscript.

References

  1. Albergel J, Boufaroua M, Pepin Y (1998) Bilan de l’érosion sur les petits bassins versants des lacs collinaires en climat semi-aride Tunisien. Bull Réseau Erosion 18:67–75Google Scholar
  2. Albergel J, Collinet J, Pépin Y, Zante P, Nasri S, Boufaroua M, Droubi A, Merzouk A (2005) The sediment budgets of hill reservoirs in small catchments in North Africa and the Middle East. In: Walling DE, Horowitz AJ (eds) Sediment Budgets 1. IAHS Publ 291, pp 323–331Google Scholar
  3. Albergel J, Mansouri T, Zante P, Ben Mamou A, Abdeljaoued S (2006) Organic carbon in the sediments of hill dams in a semiarid Mediterranean area. In: Roose E, Lal R, Feller C, Barthès B, Stewart BA (eds) Soil erosion and carbon dynamics. Taylor and Francis, Boca Raton, pp 289–299Google Scholar
  4. Ambers RKR (2001) Using the sediment record of western Oregon flood-control reservoir to assess the influence of storm history and logging on sediment yield. J Hydrol 244:181–200CrossRefGoogle Scholar
  5. Baggoura B, Noureddine A, Benkrid M (1998) Level of natural and artificial radioactivity in Algeria. Appl Radiat Isotopes 49:867–873CrossRefGoogle Scholar
  6. Ben Cheikha L, Gueddari M (2008) Le basin versant de Jannet (Tunisie): évaluation des risques d’érosion hydrique. M@ppemonde 90 (2008.2). http://mappemonde.mgm.fr/num18/articles/art08202.pdf
  7. Bouchnak H, Felfoul MS, Boussema MR, Snane MH (2009) Slope and rainfall effects on the volume of sediment yield by gully erosion in the Souar lithologic (Tunisia). Catena 78:170–177CrossRefGoogle Scholar
  8. Cantón Y, Solé-Benet A, de Vente J, Boix-Fayos C, Calvo-Cases A, Asensio C, Puigdefábregas J (2011) A review of runoff generation and soil erosion across scales in semiarid south-eastern Spain. J Arid Environ 75:1254–1261CrossRefGoogle Scholar
  9. Ciesielski H, Proix N, Sterckeman T (1997) Détermination des incertitudes liées à une méthode de mise en solution des sols et des sédiments par étude inter-laboratoire. Analysis 25:188–192Google Scholar
  10. Collinet J, Zante P (2005) Analyse du ravinement de bassins versants à retenues collinaires sur sols à fortes dynamiques structurales (Tunisie). Géomorphologie 1: relief, Processus. Environ 1:61–74Google Scholar
  11. Collins AL, Walling DE (2002) Selecting fingerprint properties for discriminating potential suspended sediment sources in river basins. J Hydrol 261:218–244CrossRefGoogle Scholar
  12. Collins AL, Walling DE, Leeks GJL (1997) Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique. Catena 29:1–27CrossRefGoogle Scholar
  13. Collins AL, Walling DE, Webb L, King P (2010) Apportioning catchment scale sediment sources using a modified composite fingerprinting technique incorporating property weightings and prior information. Geoderma 155:249–261CrossRefGoogle Scholar
  14. Desprats JF, Raclot D, Rousseau M, Cerdan O, Garcin M, Le Bissonnais Y, Ben Slimane A, Fouche J, Monfort-Climent D (2012) Satellite imagery mapping of linear erosion features. Land Degrad Devel. doi: 10.1002/ldr.1094
  15. D’Haen K, Verstraeten G, Degryse P (2012) Fingerprinting historical fluvial sediment fluxes. Prog Physical Geog 36:154–186CrossRefGoogle Scholar
  16. de Vente J, Poesen J, Bazzofi P, Van Rompaey A, Verstaeten G (2006) Predicting catchment sediment yield in Mediterranean environments: the importance of sediment sources and connectivity in Italian drainage basins. Earth Surf Process Landf 31:1017–1034CrossRefGoogle Scholar
  17. de Vente J, Poesen J, Verstraeten G, Van Rompaey A, Govers G (2008) Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain. Glob Planet Chang 60:393–415CrossRefGoogle Scholar
  18. EEA (2000) Down to earth: soil degradation and sustainable development in Europe, a challenge for the 21st century. Environmental issues series 16. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  19. Espitalié J, Deroo G, Marquis F (1985) La pyrolyse Rock-Eval et ses applications. Revue de l’Institut Francais du Petrole, Part I 40:563–578, Part II 40:755–784; Part III 41:73–89Google Scholar
  20. Evrard O, Némery J, Gratiot N, Duvert C, Ayrault S, Lefèvre I, Poulenard J, Prat C, Bonté P, Esteves M (2010) Sediment dynamics during the rainy season in tropical highland catchments of central Mexico using fallout radionuclides. Geomorphology 124:42–54CrossRefGoogle Scholar
  21. Evrard O, Navratil O, Ayrault S, Ahmadi M, Némery J, Legout C, Lefèvre I, Poirel A, Bonté P, Esteves M (2011) Combining suspended sediment monitoring and fingerprinting to determine the spatial origin of fine sediment in a mountainous river catchment. Earth Surf Process Landf 36:1072–1089CrossRefGoogle Scholar
  22. Foster IDL, Boardman J, Keay-Brigth J (2007) Sediment tracing and environmental history for two small catchments, Karoo Uplands, South Africa. Geomorphol 90:126–143CrossRefGoogle Scholar
  23. Haregeweyn N, Melesse B, Tsunekawa A, Tsubo M, Mesheshe D, Babullo Balana B (2012) Reservoir sedimentation and its mitigating strategies: a case study of Angered reservoir (NW Ethiopia). J Soils Sediments 12:291–305CrossRefGoogle Scholar
  24. Harris D, Horwath WR, Kessel CV (2001) Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci Soc Am J 65:1853–1856CrossRefGoogle Scholar
  25. He Q, Walling DE (1996) Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments. J Environ Radioact 30:117–137CrossRefGoogle Scholar
  26. He Q, Walling DE, Owens PN (1996) Interpreting the 137Cs profiles observed in several small lakes and reservoirs in southern England. Chem Geol 129:115–131CrossRefGoogle Scholar
  27. Hentati A, Kawamura A, Amaguchi H, Iseri Y (2010) Evaluation of sedimentation vulnerability at small hillside reservoirs in the semi-arid region of Tunisia using the self-organizing map. Geomorph 122:56–64CrossRefGoogle Scholar
  28. Jebari S, Berndtsson R, Bahri A, Boufaroua M (2010) Spatial soil loss risk and reservoir siltation in semi-arid Tunisia. Hydrol Sci J 55:121–137CrossRefGoogle Scholar
  29. Juracek KE, Ziegler AC (2009) Estimation of sediment sources using selected chemical tracers in the Perry Lake basin, Kansas, USA. Int J Sediment Res 24:108–125CrossRefGoogle Scholar
  30. Lal R (2006) Influence of soil erosion on carbon dynamics in the world. In: Roose E, Lal R, Feller C, Barthès B, Stewart BA (eds) Soil erosion and carbon dynamics. Taylor and Francis, Boca Raton, pp 23–35Google Scholar
  31. Lesschen JP, Cammeraat LH, Nieman T (2008) Erosion and terrace failure due to agricultural land abandonment in a semi-arid environment. Earth Surf Process Landf 33:1574–1584CrossRefGoogle Scholar
  32. Martinez-Carreras N, Gallart F, Iffly JF, Pfister L, Walling DE, Krein A (2008) Sediment dynamics in changing environments. In: Schmidt J, Cochrane T, Phillips C, Elliot S, Davies T, Basher L (eds) Uncertainty assessment in suspended sediment fingerprinting based on tracer mixing models: a case study from Luxembourg. IAHS Publ 325, Wallingford, pp 94–105Google Scholar
  33. Mougou R, Mansour M, Vacher J, Cellier P (2006) La valorisation agricole de l’eau des lacs collinaires: cas du lac collinaire Kamech (Tunisie). Sécheresse 17:385–90Google Scholar
  34. Morris GL, Fan J (1997) Reservoir sedimentation handbook. McGraw-Hill, New YorkGoogle Scholar
  35. Motha JA, Wallbrink PJ, Hairsine PB, Grayson RB (2002) Tracer properties of eroded sediment and source material. Hydrol Process 16:1983–2000CrossRefGoogle Scholar
  36. Navas A, Valero-Garcés B, Gaspar L, Palazón L (2011) Radionuclides and stable elements in the sediments of the Yesa Reservoir, Central Spanish Pyrenees. J Soils Sediments 11:1082–1098CrossRefGoogle Scholar
  37. Nicholls DJ (2001) The source and behaviour of fine sediment deposits in the River Torridge Devon and their implications for salmon spawning. Unpublished PhD thesis, University of ExeterGoogle Scholar
  38. Owens PN, Walling DE (2002) Changes in sediment sources and floodplain deposition rates in the catchment of the River Tweed, Scotland, over the last 100 years: the impact of climate and land use change. Earth Surf Process Landf 27:403–423CrossRefGoogle Scholar
  39. Owens PN, Walling DE, Leeks GJL (1999) Use of floodplain sediment cores to investigate recent historical changes in overbank sedimentation rates and sediment sources in the catchment of the River Ouse, Yorkshire, UK. Catena 36:21–47CrossRefGoogle Scholar
  40. Owens PN, Batalla RJ, Collins AJ, Gomez B, Hicks DM, Horowitz AJ, Kondolf GM, Marden M, Page MJ, Peacock DH, Petticrew EL, Salomons W, Trustrum NA (2005) Fine-grained sediment in river systems: environmental significance and management issues. River Res Applic 21:693–717CrossRefGoogle Scholar
  41. Patience AJ, Lallier-Vergès E, Sifeddine A, Albéric P, Guillet B (1995) Organic matter accumulation: the organic cyclicities of the Kimmeridge clay formation (Yorkshire, G.B.) and the recent Maar sediments (Lac du Bouchet). Lecture Notes in Earth Sciences 57. In: Lallier-Vergès E, Tribovillard N, Bertrand P (eds) Organic fluxes and early diagenesis in the lacustrine environment: the superficial sediments of the Lac du Bouchet (Haute Loire, France). Springer-Verlag, Heidelberg, pp 145–156Google Scholar
  42. Pimentel D, Harvey C, Resosudarmo P, Sinclair K, Kurz D, McNair M, Crist S, Shpritz L, Fitton L, Saffouri R, Blair R (1995) Environmental and economic costs of soil erosion and conservation benefits. Science 267:1117–1123CrossRefGoogle Scholar
  43. Poesen J, Hooke J (1997) Erosion, flooding and channel management in Mediterranean environments of southern Europe. Prog Physical Geog 21:157–199CrossRefGoogle Scholar
  44. Poesen J, Nachtergaele J, Verstraeten G, Valentin C (2003) Gully erosion and environmental change: importance and research needs. Catena 50:91–133CrossRefGoogle Scholar
  45. Raclot D, Albergel J (2006) Runoff and water erosion modelling using WEPP on a Mediterranean cultivated catchment. Phys Chem Earth 31:1038–1047CrossRefGoogle Scholar
  46. Rahaingomanana N (1998) Caractérisation géochimique des lacs collinaires de la Tunisie semi-aride et régulation géochimique du phosphore. PhD thesis, Univ I, MontpellierGoogle Scholar
  47. Remini W, Remini B (2003) La sédimentation dans les barrages de l’Afrique du nord. Larhyss J 2:45–54Google Scholar
  48. Roose E, Chebbani R, Bourougaa L (2000) Ravinement en Algérie, facteurs de contrôle, quantification et réhabilitation. Sci et changements planétaires/Sécheresse 11:317–326Google Scholar
  49. Russell MA, Walling DE, Hodgkinson RA (2001) Suspended sediment sources in two small lowland agricultural catchments in the UK. J Hydrol 252:1–24CrossRefGoogle Scholar
  50. Sauvadet M, Raclot D, Ben Slimane A, Le Bissonnais Y (2012) Déterminisme du ruissellement et de l’érosion hydrique de la parcelle au versant en milieu méditerranéen marneux. Revue Marocaine des Sciences Agronomiques Vétérinaires 1:41–46. http://www.agrimaroc.org/index.php/Actes_IAVH2/article/view/282/248.
  51. Schlesinger WH (1995) Soil respiration and changes in soil carbon stocks. In: Woodwell GM, Mackenzie FT (eds) Biotic Feedbacks in the Global Climate System. Oxford University Press, Oxford, pp 159–168Google Scholar
  52. Small IF, Rowan JS, Franks SW (2002) Structure, function and management implications of fluvial sedimentary systems. In: Dyer FJ, Thoms MC, Olley JM (eds) Quantitative sediment fingerprinting using a Bayesian uncertainty estimation framework. IAHS Publ 276, Wallingford, pp 443–450Google Scholar
  53. Smith SV, Renwick WH, Buddemeier RW, Crossland CJ (2001) Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Glob Biogeochem Cycle 15:697–707CrossRefGoogle Scholar
  54. Smith HG, Sheridan GJ, Nyman P, Child DP, Lane PNJ, Hotchkis MAC, Jacobsen GE (2012) Quantifying sources of fine sediment supplied to post-fire debris flows using fallout radionuclide tracers. Geomorph 139–140:403–415CrossRefGoogle Scholar
  55. Vandenbroucke M, Largeau C (2007) Kerogen origin, evolution and structure. Organic Geochem 38:719–833CrossRefGoogle Scholar
  56. Vanmaercke M, Poesen J, Verstraeten G, Maetens W, de Vente J (2012a) Sediment yield as a desertification risk indicator. Sci Total Environ 409:1715–1725CrossRefGoogle Scholar
  57. Vanmaercke M, Maetens W, Poesen J, Jankauskas B, Jankauskiene G, Verstraeten G, de Vente J (2012b) A comparison of measured catchment sediment yields with measured and predicted hillslope erosion rates in Europe. J Soils Sediments 12:586–602CrossRefGoogle Scholar
  58. Wallbrink PJ, Murray AS, Olley JM (1999) Relating suspended sediment to its original soil depth using fallout radionuclides. Soil Sci Soc Am J 63:369–378CrossRefGoogle Scholar
  59. Walling DE (2005) Tracing suspended sediment sources in catchments and river systems. Sci Total Environ 344:159–184CrossRefGoogle Scholar
  60. Walling DE, Woodward JC, Nicholas AP (1993) Tracers in hydrology. In: Peters NE, Hoehn E, Leibundgut C, Tase N, Walling DE (eds) A multi-parameter approach to fingerprint suspended-sediment sources. IAHS Publ 215, Wallingford, pp 329–338Google Scholar
  61. Wasson RJ, Furlonger L, Parry D, Pietsch T, Valentine E, Williams D (2010) Sediment sources and channel dynamics, Daly River, Northern Australia. Geomorph 114:161–174CrossRefGoogle Scholar
  62. Wilson JP, Fischer WW (2011) Geochemical support for a climbing habit within the Paleozoic Seed Fern Genus Medullosa. Int J Plant Sci 172:586–598CrossRefGoogle Scholar
  63. Zhang X, Walling DE (2005) Landscape and watershed processes: characterizing land surface erosion from cesium-137 profiles in lake and reservoir sediments. J Environ Qual 34:514–52CrossRefGoogle Scholar
  64. Zhang X, Walling DE, Quine TA, Wen A (1997) Use of reservoir deposits and caesium-137 measurements to investigate the erosional response of a small drainge basin in the rolling loess plateau region of China. Land Degrad Dev 8:1–96CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Abir Ben Slimane
    • 1
    • 2
  • Damien Raclot
    • 2
  • Olivier Evrard
    • 3
  • Mustapha Sanaa
    • 1
  • Irène Lefèvre
    • 3
  • Mehdi Ahmadi
    • 3
  • Mouna Tounsi
    • 4
  • Cornelia Rumpel
    • 5
  • Abdallah Ben Mammou
    • 4
  • Yves Le Bissonnais
    • 6
  1. 1.Institut National Agronomique de TunisieTunis-MahrajèneTunisia
  2. 2.IRD-UMR LISAH(INRA-IRD-Supagro)MontpellierFrance
  3. 3.Laboratoire des Sciences du Climat et de l’Environnement (LSCE/IPSL)–Unité Mixte de Recherche 8212 (CEA, CNRS, UVSQ)Gif-sur-Yvette CedexFrance
  4. 4.Laboratoire des Ressources Minérales et Environnement, Département de Géologie, Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
  5. 5.Bioemco (UPMC-CNRS-INRA-ENS-UPEC-IRD-AgroParisTech), Centre INRA Versailles-Grignon Bâtiment EGERThiverval-GrignonFrance
  6. 6.INRA-UMR LISAH (INRA-IRD-Supagro)MontpellierFrance

Personalised recommendations