Journal of Soils and Sediments

, Volume 13, Issue 2, pp 278–293 | Cite as

Occurrence and distribution of earthworms in agricultural landscapes across Europe with regard to testing for responses to plant protection products

  • Axel Dinter
  • Christian Oberwalder
  • Patrick Kabouw
  • Mike Coulson
  • Gregor Ernst
  • Thorsten Leicher
  • Mark Miles
  • Gabe Weyman
  • Olaf Klein



Within the regulatory framework for authorisation of plant protection products (PPPs) (EU Directive 91/414/1991/EEC replaced by Regulation (EC) 1107/2009), higher tier risk assessments and earthworm field tests are conducted in different countries across Europe. This paper describes dominant earthworm species for regulatory and biogeographical regions in agricultural landscapes across Europe and examines regional differences in earthworm communities and densities and their respective response to a toxic reference.

Materials and methods

For the assessment of earthworm abundance and species distribution, data of untreated control plots from 30 earthworm field studies were analysed; each conducted according to the ISO 11268–3 (1999) guideline by European Crop Protection Association member companies in the context of registration of PPPs. For the evaluation of the response to PPPs under different regional and climatic conditions, the effect on earthworm abundance was assessed by comparing plots treated with toxic references with untreated control plots. Additionally, a comparative literature review was included providing an overview of earthworm species composition and densities in agricultural crops from 14 European countries.

Results and discussion

The assessment of earthworm field studies from six different European countries revealed that common earthworm species of anecic and endogeic ecological groups are present at most field sites. Dominant species groups of endogeic and anecic earthworms can be defined that are abundant in all assessed countries. These are the endogeic species Aporrectodea caliginosa, Aporrectodea rosea and Allolobophora chlorotica, and the anecic species Lumbricus terrestris (Northern and Central Europe) and Lumbricus friendi (Southern Europe). Taking into account the high variability in total earthworm abundances, it can be concluded that the variability within regions was larger than the variability between regions.


Analysis of the earthworm community and data of toxic references lead to the conclusion that testing in different zones is not considered necessary.


Earthworm abundance Field testing Species distribution Pesticides Plant protection products 


  1. Bauchhenss J (1991) Vergleichende Untersuchungen der Individuendichte, Biomasse, Artendichte und Diversität von Regenwurmpopulationen auf konventionell und alternativ bewirtschafteten Flächen. Bayer Landw Jahrbuch 68:430–443Google Scholar
  2. Bauer R (2004) Bodenzoologische Untersuchungen (Lumbricidae und Enchytraeidae) auf den BDF 1 – 8, Endbericht an das Amt der Salzburger LandesregierungGoogle Scholar
  3. BBA (Biologische Bundesanstalt) (1994) Richtlinien für die amtliche Prüfung von Pflanzenschutzmitteln, Nr. VI, 2–3, Auswirkungen von Pflanzenschutzmitteln auf Regenwürmer im FreilandGoogle Scholar
  4. Beylich A, Graefe U (2009) Investigations of annelids at soil monitoring sites in Northern Germany: reference ranges and time-series data. Soil Org 81:175–196Google Scholar
  5. Binet F, Hallaire V, Curmi P (1997) Agricultural practices and the spatial distribution of earthworms in maize fields. Relationships between earthworm abundance, maize plants and soil compaction. Soil Biol Biochem 29(3/4):577–583CrossRefGoogle Scholar
  6. Bouché MB (1972) Lombriciens de France—Ecologie et systématique. INRA Publication Annales de Zoologie. Ecol Anim, Numéro Hors-Sér 72–2:671Google Scholar
  7. Butt KR, Grigoropoulou N (2010) Review article: basic research tools for earthworm ecology applied and environmental soil science, vol. 2010, Article ID 562816, 12 ppGoogle Scholar
  8. Butt KR, Nieminen MA, Sirén T, Ketoja E, Nuutinen V (2005) Population and behavioural level responses of arable soil earthworms to boardmill sludge application. Biol Fert Soils 42(2):163–167CrossRefGoogle Scholar
  9. Curry JP, Byrne D, Schmidt O (2002) Intensive cultivation can drastically reduce earthworm populations in arable land. Eur J Soil Biol 38:127–130CrossRefGoogle Scholar
  10. Decaėns T, Margerie P, Aubert M, Hedde M, Bureau F (2008) Assembly rules within earthworm communities in North-Western France—a regional analysis. Appl Soil Ecol 39(3):321–335CrossRefGoogle Scholar
  11. Didden WAM (2001) Earthworm communities in grasslands and horticultural soils. Biol Fertil Soils 33:111–117CrossRefGoogle Scholar
  12. Easton EG (1983) A guide to the valid names of Lumbricidae (Oligochaeta). In: Satchell JE (ed) Earthworm ecology. Chapman & Hall, London, pp 475–487CrossRefGoogle Scholar
  13. Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Chapman and Hall, London, p 97Google Scholar
  14. Edwards CA, Lofty JR (1972) Biology of earthworms. Chapman and Hall, London, p 103Google Scholar
  15. EEC (2003) SANCO/10329. Guidance document on terrestrial ecotoxicology under council directive 91/414/EEC. Rev. 2Google Scholar
  16. EFSA (2010) EFSA Panel on Plant Protection Products and their Residues (PPR): scientific opinion on the development of a soil ecoregions concept using distribution data on invertebrates. EFSA J 8(10):1820 [77 pp], available online:
  17. Ehrmann O (2012) Auswirkungen des Klimawandels auf die Regenwürmer Baden-Württembergs, Literaturstudie zur Bedeutung von Regenwürmern und den möglichen Auswirkungen des Klimawandels auf Arten und Populationen der Regenwürmer, LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, Karlsruhe, available online:
  18. EU (European Union) (1991) Council directive concerning the placing of plant protection products on the market. No. 91/414/EEC. Brussels, BelgiumGoogle Scholar
  19. Finck A (1952) Ökologische und Bodenkundliche Studien über die Leistungen der Regenwürmer für die Bodenfruchtbarkeit. Z Pflanzenernähr, Düngung, Bodenkd 58:120–145CrossRefGoogle Scholar
  20. Gnan R (2002) Analyse und Bewertung der Abundanz und des Artenspektrums von Regenwurmpopulationen (Lumbriciden) in ackerbaulich genutzten Böden des Lehr- und Versuchsbetriebes Gladbacherhof der Justus-Liebig-Universität Gießen. Diplomarbeit 2002 [online] Giessen, Univ., URL:
  21. Graff O (1953) Die Regenwürmer Deutschlands. Verlag Schaper, HannoverGoogle Scholar
  22. Gullich P, Paul R, Marre G (2008) Ergebnisse der Bodendauerbeobachtung auf landwirtschaftlich genutzten Flächen in Thüringen, 120. VDLUFA-Kongress in Jena, 16.-19. September 2008Google Scholar
  23. Hutcheon JA, Iles DR, Kendall DA (2001) Earthworm populations in conventional and integrated farming systems in the LIFE project (SW England) in 1999–2000. Ann Appl Biol 139:361–372CrossRefGoogle Scholar
  24. ISO (International Organisation for Standardisation) (1999) Soil quality—effects of pollutants on earthworms. Part 3: Guidance on the determination of effects in field situations. ISO No. 11268–3Google Scholar
  25. Joschko M, Gebbers R, Barusky D, Rogasik J, Höhn W, Hierold W, Fox CA, Timmer J (2009) Location-dependency of earthworm response to reduced tillage on sandy soil. Soil Till Res 102:55–66CrossRefGoogle Scholar
  26. Kasprzak K (1987) Structure of the earthworm (Oligochaeta: Lumbricidae) communities of natural and anthropogenic ecosystems in lowland and mountain areas of Poland. In: Bonvicini Pagliai AM, Omodeo P (eds) On earthworms. Mucchi, Modena, pp 297–313Google Scholar
  27. Krogh PH, Griffiths B, Demšar D, Bohanec M, Debeljak M, Andersen MN, Sausse C, Birch ANE, Caul S, Holmstrup M, Heckmann LH, Cortet J (2007) Responses by earthworms to reduced tillage in herbicide tolerant maize and Bt maize cropping systems. Pedobiologia 51:219–227CrossRefGoogle Scholar
  28. Kula C, Heimbach F, Riepert F, Römbke J (2006) Technical recommendations for the update of the ISO earthworm field test guideline (ISO 11268–3). J Soils Sediments 8(3):182–186Google Scholar
  29. Langer U, Kuhn K, Weniger T, Neubert E (2012) 17 Jahre Regenwurmerfassung auf Boden-Dauerbeobachtungsflächen (BDF) in Sachsen-Anhalt, Landesamt für Umweltschutz Sachsen-Anhalt, 26 ppGoogle Scholar
  30. Lee KE (1985) Earthworms—their ecology and relationship with soils and land use. Academic Press, New YorkGoogle Scholar
  31. LFU (2011) Den Boden fest im Blick—25 Jahre Bodendauerbeobachtung in Bayern, Gemeinsame Fachtagung des LfU und der Landesanstalten für Landwirtschaft (LfL) sowie für Wald und Forstwirtschaft (LWF) am 13.10.2011, Bayrisches Landesamt für Umwelt (LfU), Augsburg, 90 ppGoogle Scholar
  32. Makulec G (2004) Lumbricidae communities in several years old midfield shelterbelt (Turew region, western Poland). Pol J Ecol 52(2):173–179Google Scholar
  33. Onteniente DAP (1997) Lombrices de tierra de la comunidad Valencia: faunística, ecología y parasitología. Doctoral thesis, University of Valencia, Faculty of Biology, Department of Animal Biology, 376 ppGoogle Scholar
  34. Paoletti MG (1988) Soil invertebrates in cultivated and uncultivated soils in northeastern Italy. Estratto Redia 71:501–563Google Scholar
  35. Paoletti MG, Iovane E, Cortese M (1988) Pedofauna bioindicators and heavy metals in five agroecosystems in north-east Italy. Rev Ecol Biol Sol 25:33–58Google Scholar
  36. Pelosi C, Bertrand M, Capowiez Y, Boizard H, Roger-Estrade J (2009) Earthworm collection from agricultural fields: comparisons of selected expellants in presence/absence of hand-sorting. Eur J Soil Biol 45(2):176–183CrossRefGoogle Scholar
  37. Pižl V (1992) Succession of earthworm populations in abandoned fields. Soil Biol Biochem 24(12):1623–1628CrossRefGoogle Scholar
  38. Raw F (1959) Estimating earthworm populations by using formalin. Nature 184:1661–1662CrossRefGoogle Scholar
  39. Regulation (EC) 1107/2009 of the European parliament and of the council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EECGoogle Scholar
  40. Römbke J, Dreher P, Beck, L, Hund-Rinke K, Jänsch S, Kratz, W, Pieper S, Ruf A, Spelda J, Woas S (2002) Entwicklung von bodenbiologischen Bodengüteklassen für Acker- und Grünlandstandorte, in: Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit, Forschungsbericht 299 74 294, UBA-FB 000268, Texte 20–02, Umweltbundesamt, pp 273Google Scholar
  41. Schmidt O (2001) Appraisal of the electrical octet method for estimating earthworm populations in arable land. Ann Appl Biol 138:231–241CrossRefGoogle Scholar
  42. Schmidt O, Curry JP (2001) Population dynamics of earthworms (Lumbricidae) and their role in nitrogen turnover in wheat and wheat-clover cropping systems. Pedobiologia 45:174–187CrossRefGoogle Scholar
  43. Schmidt O, Curry JP, Hackett RA, Purvis G, Clements RO (2001) Earthworms communities in conventional wheat monocropping and low-input wheat-clover intercropping systems. Ann Appl Biol 138:377–388CrossRefGoogle Scholar
  44. Schmidt O, Clements RO, Donaldson G (2003) Why do cereal-legume intercrops support large earthworm populations? Appl Soil Ecol 22:18–190CrossRefGoogle Scholar
  45. Scullion J, Neale S, Philipps L (2002) Comparisons of earthworm populations and cast properties in conventional and organic arable rotations. Soil Use Manage 18:293–300CrossRefGoogle Scholar
  46. Sims RW, Gerard BM (1985) Earthworms. Keys and notes to the identification and study of the species. Synopsis of the British Fauna (New series), 31. The Linnean Society of London and the Estuarine and Coastal Sciences Association, UKGoogle Scholar
  47. Ter Braak CJV, Smilauer P (2002) CANOCO for Windows Version 4.5. Biometrics Plant Research International, WageningenGoogle Scholar
  48. Tischer S (2010) Lumbricidenuntersuchungen an Boden-Dauerbeobachtungsflächen in Thüringen, Bericht 2010, Thüringer Landesanstalt für Umwelt und Geologie (TLUG), Martin-Luther-Universität, Institut für Agrar- und Ernährungswissenschaften, Bodenbiogeochemie, Halle /SaaleGoogle Scholar
  49. Topoliantz S, Ponge JF, Viaux P (2000) Earthworm and enchytraeid activity under different arable farming systems, as exemplified by biogenic structures. Plant Soil 225(1–2):39–51CrossRefGoogle Scholar
  50. Valckx J, Hermy M, Muys B (2006) Indirect gradient analysis at different spatial scales of prorated and non-prorated earthworm abundance and biomass data in temperate agro-ecosystems. Eur J Soil Biol 42:341–347CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Axel Dinter
    • 1
  • Christian Oberwalder
    • 2
  • Patrick Kabouw
    • 2
  • Mike Coulson
    • 3
  • Gregor Ernst
    • 4
  • Thorsten Leicher
    • 4
  • Mark Miles
    • 5
  • Gabe Weyman
    • 6
  • Olaf Klein
    • 7
  1. 1.DuPont de Nemours (Deutschland) GmbHCrop ProtectionNeu-IsenburgGermany
  2. 2.BASF AG, Agrarzentrum LimburgerhofLimburgerhofGermany
  3. 3.Syngenta Crop Protection AGBerkshireUK
  4. 4.Bayer CropScience AGMonheimGermany
  5. 5.Dow AgroSciencesAbingdonUK
  6. 6.Makhteshim-Agan (UK) Ltd.BerkshireUK
  7. 7.Eurofins Agroscience Services EcoChem GmbHNiefern-OeschelbronnGermany

Personalised recommendations