Journal of Soils and Sediments

, Volume 12, Issue 4, pp 565–575 | Cite as

A critical assessment of soil amendments (slaked lime/acidic fertilizer) for the phytomanagement of moderately contaminated shooting range soils

  • Hector M. Conesa
  • Mirjam Wieser
  • Björn Studer
  • Maria N. González-Alcaraz
  • Rainer Schulin



The effects of the addition of an acidic fertilizer solution and/or slaked lime (5.5 g Ca(OH)2 kg−1) on a slightly acidic shooting range soil (pH 6.1, % organic carbon 5.4) with moderate metal (e.g., 620 mg kg−1 Pb) and metalloid (17 mg kg−1 Sb) concentrations on metal and Sb solubility and plant accumulation were investigated.

Materials and methods

In a pot experiment, we grew Plantago lanceolata, Lolium perenne and Triticum aestivum. The pH, dissolved organic carbon (DOC), and metal and Sb concentrations in the leachate were monitored.

Results and discussion

The addition of slaked lime increased the soil pH from 6.1 to 7.2 and the DOC from 100 to 300 mg l−1. In contrast to Sb, we found a correlation between DOC and soluble Cu concentrations. The addition of the acidic fertilizer significantly increased Mn- and Pb-NaNO3 extractable concentrations. Slaked lime decreased at first, Pb-, Mn- Ni- and Zn-NaNO3 extractable concentrations, but with time, these concentrations increased. Metal accumulation in shoots was in general low. The highest concentrations were obtained in shoots of L. perenne for Mn (135 mg kg−1 DW). Spikes of T. aestivum accumulated more Cu, Mn, Ni and Zn than shoots. Grains of T. aestivum had higher Zn concentrations (up to 37 mg kg−1) than spikes and shoots (up to 22 and 19 mg kg−1, respectively). Antimony concentrations were always below 2 mg kg−1 for the three species studied.


Under these growing conditions, these three plant species showed to be suitable for the phytomanagement of moderately contaminated shooting range areas.


Antimony Dissolved organic carbon Lead Phytomanagement Rye grass Shooting range soils Wheat 


  1. Alarcon-Vera AL (2004) Diagnostico Agrıcola, Escuela Tecnica Superior de Ingenieria Agronomica de Cartagena, Cartagena, SpainGoogle Scholar
  2. Baroni F, Boscagli A, Protano G, Riccobono F (2000) Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environ Pollut 109:347–352CrossRefGoogle Scholar
  3. Cao X, Ma L-Q, Chen M, Hardison DW Jr, Harris WG (2003) Weathering of lead bullets and their environmental effects at outdoor shooting ranges. J Environ Qual 32:526–534CrossRefGoogle Scholar
  4. Chandra R, Bharagava RN, Yadav S, Mohan D (2009) Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. J Hazard Mater 162:1514–1521CrossRefGoogle Scholar
  5. Chaney RL (1989) Toxic element accumulation in soils and crops: protecting soil fertility and agricultural food-chains. In: Bar-Yosef B, Barrow NJ, Goldshmid J (eds) Inorganic contaminants in the vadose zone. Springer-Verlag, Berlin, pp 140–158CrossRefGoogle Scholar
  6. Chrastny V, Komarek M, Hajek T (2010) Lead contamination of an agricultural soil in the vicinity of a shooting range. Environ Monit Assess 162:37–46CrossRefGoogle Scholar
  7. ECC (European Communities Council) (1986) Directive (86/278/EEC) on the Protection of the Environment, and in Particular of the Soil, when Sewage Sludge is used in Agriculture, 1986, Off. J. Eur. Commun. L181, 04/07/86, pp 6–12Google Scholar
  8. Conesa HM, Robinson BH, Schulin R, Nowack B (2007a) Growth of Lygeum spartum in acid mine tailings: response of plants developed from seedlings, rhizomes and at field conditions. Environ Pollut 145:700–707CrossRefGoogle Scholar
  9. Conesa HM, Nowack B, Schulin R (2007b) A laboratory study on revegetation and metal uptake in native plant species from neutral mine tailings. Water Air Soil Pollut 183:201–212CrossRefGoogle Scholar
  10. Conesa HM, Wieser M, Gasser M, Hockmann K, Evangelou MWH, Studer B, Schulin R (2010) Effects of three amendments on extractability and fractionation of Pb, Cu, Ni and Sb in two shooting range soils. J Hazard Mater 181:845–850CrossRefGoogle Scholar
  11. Conesa HM, Wieser M, Studer B, Schulin R (2011) Effects of vegetation and fertilizer on metal and Sb plant uptake in a calcareous shooting range soil. Ecol Eng 37:654–658CrossRefGoogle Scholar
  12. Confoederatio Helvetica (1998) Schweizerische Bundesrat. 814.12 Verordnung vom 1. Juli 1998 über Belastungen des Bodens (VBBo)Google Scholar
  13. Curtin D, Campbell CA, Jalil A (1998) Effects of acidity on mineralization: pH dependence of organic matter mineralization in weakly acidic soils. Soil Bio Biochem 30:57–64CrossRefGoogle Scholar
  14. Domínguez MT, Marañón T, Murillo JM, Schulin R, Robinson BH (2008) Trace element accumulation in woody plants of the Guadiamar Valley, SW, Spain: a large-scale phytomanagement study. Environ Pollut 152:50–59CrossRefGoogle Scholar
  15. Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248Google Scholar
  16. European Communities Council (2001) Commission Regulation 466/2001 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Commun. L77, 1–13.Google Scholar
  17. FAL, RAC, FAW (Forschungsanstalt Agroscope Reckenholz- Tänikon, Forschungsanstalt Agroscope Liebefeld-Posieux; Forschungsanstalt Agroscope Changins-Wa¨denswil) (1996) Methode NaNO3-Ex "Extraktion von Schwermetallen mit Natriumnitrat (1:2.5)” Schweizerische Referenzmethoden der Eidgeno¨ssischen landwirtschaftlichen ForschungsanstaltenGoogle Scholar
  18. Filella M, Belzile N, Chen Y-W (2002) Antimony in the environment: a review focused on natural waters: I. Occurrence. Earth Sci Rev 57:125–176CrossRefGoogle Scholar
  19. Johnson CA, Moench H, Wersin P, Kugler P, Wenger C (2005) Solubility of antimony and other elements in samples taken from shooting ranges. J Environ Qual 34:248–254Google Scholar
  20. Jørgensen SS, Willems M (1987) The fate of lead in soils: the transformation of lead pellets in shooting-range soils. Ambio 16:11–15Google Scholar
  21. Khokhotva O, Waara S (2010) The influence of dissolved organic carbon on sorption of heavy metals on urea-treated pine bark. J Hazard Mater 173:689–696CrossRefGoogle Scholar
  22. Kilgour DW, Moseley RB, Barnett MO, Savage KS, Jardine PM (2008) Potential negative consequences of adding phosphorus-based fertilizers to immobilize lead in soil. J Environ Qual 37:1733–1740CrossRefGoogle Scholar
  23. Klitzke S, Lang F (2009) Mobilization of soluble and dispersible lead, arsenic, and antimony in a polluted, organic-rich soil – effects of pH increase and counterion valency. J Environ Qual 38:933–939CrossRefGoogle Scholar
  24. Klitzke S, Lang F, Kaupenjohann M (2008) Increasing pH releases colloidal lead in a highly contaminated forest soil. Eur J Soil Sci 59:265–273CrossRefGoogle Scholar
  25. Krupka KM, Serna RJ (2002) Geochemical factors affecting the behavior of antimony, cobalt, europium, technetium and uranium in vadose sediments. Pacific Northwest National Laboratoy. United States. Available at: (accessed on 30 January 2009)
  26. Lin Z (1996) Secondary mineral phases of metallic lead in soils of shooting ranges from Örebro County, Sweden. Environ Geol 27:370–375CrossRefGoogle Scholar
  27. Liu W-X, Liu J-W, Wu M-Z, Li Y, Zhao Y, Li S-R (2009) Accumulation and translocation of toxic heavy metals in winter wheat (Triticum aestivum L.) growing in agricultural soil of Zhengzhou, China. Bull Environ Contam Toxicol 82:343–347CrossRefGoogle Scholar
  28. Livens FR (1991) Chemical reactions of metals with humic material. Environ Pollut 70:183–208CrossRefGoogle Scholar
  29. Manninem S, Tanskanen N (1993) Transfer of lead from shotgun pellets to humus and three plant species in a Finnish shooting range. Arch Environ Contam Toxicol 24:410–414CrossRefGoogle Scholar
  30. MHSPE (Ministry of Housing, Spatial Planning and Environment) (2000) Netherlands, Circular on target values and intervention values for soil remediation, Ministry of Housing, Spatial Planning and Environment 4-02-2000Google Scholar
  31. Migliorini M, Pigino G, Bianchi N, Bernini F, Leonzio C (2004) The effects of heavy metal contamination on the soil arthropod community of a shooting range. Environ Pollut 129:331–340CrossRefGoogle Scholar
  32. Mozafar A, Ruh R, Klingel P, Gamper H, Egli S, Frossard E (2002) Effect of heavy metal contaminated shooting range soils on mycorrhizal colonization of roots and metal uptake by leek. Environ Monit Assess 78:177–191CrossRefGoogle Scholar
  33. Murciego-Murciego A, García-Sánchez A, Rodríguez-González MA, Pinilla-Gil C, Toro-Gordillo C, Cabezas-Fernández J, Buyolo-Triguero T (2007) Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain). Environ Pollut 145:15–21CrossRefGoogle Scholar
  34. Nocito-Gobel J, Tobiason JE (1996) Effects of ionic strength on colloid deposition and release. Colloid Surface A 107:223–231CrossRefGoogle Scholar
  35. Pearson JN, Rengel Z, Jenner CF, Graham RD (1995) Transport of zinc and manganese to developing wheat grains. Physiol Plant 95:449–455CrossRefGoogle Scholar
  36. Pilarski J, Waller P, Pickering WF (1995) Sorption of antimony species by humic acid. Water Air Soil Pollut 84:51–59CrossRefGoogle Scholar
  37. Pollard AJ (1980) Diversity of metal tolerances in Plantago lanceolata L. from the southeastern United States. New Phytol 86:109–117CrossRefGoogle Scholar
  38. Pratas J, Prasad MNV, Freitas H, Conde L (2005) Plants growing in abandoned mines of Portugal are useful for biogeochemical exploration of arsenic, antimony, tungsten and mine reclamation. J Geochem Explor 85:99–107CrossRefGoogle Scholar
  39. Rafiq N, Maqsood ZT, Parveen Z (2006) Lead and cadmium in wheat grain. Bull Environ Contam Toxicol 76:1044–1052CrossRefGoogle Scholar
  40. Robinson BH, Bischofberger S, Stoll A, Schroer D, Furrer G, Roulier S, Gruenwald A, Attinger W, Schulin R (2008) Plant uptake of trace elements on a Swiss military shooting range: uptake pathways and land management implications. Environ Pollut 153:668–676CrossRefGoogle Scholar
  41. Robinson BH, Bañuelos G, Conesa HM, Evangelou MWH, Schulin R (2009) The phytomanagement of trace elements in soil. Crit Rev Plant Sci 28:240–266CrossRefGoogle Scholar
  42. Rooney CP, McLaren RG, Cresswell RJ (1999) Distribution and phytoavailability of lead in a soil contaminated with lead shot. Water Air Soil Pollut 116:535–548CrossRefGoogle Scholar
  43. Sneddon J, Clemente R, Riby Ph, Lepp NW (2009) Source-pathway-receptor investigation of the fate of trace elements derived from shotgun pellets discharged in terrestrial ecosystems managed for game shooting. Environ Pollut 157:2663–2669CrossRefGoogle Scholar
  44. Sorvari J (2007) Environmental risks at Finnish shooting ranges — a case study. Hum Ecol Risk Assess 13:1111–1146CrossRefGoogle Scholar
  45. Sorvari J, Antikainen R, Pyy O (2006) Environmental contamination at Finnish shooting ranges—the scope of the problem and management options. Sci Total Environ 366:21–31CrossRefGoogle Scholar
  46. Spuller C, Wegand H, Marb C (2007) Trace metal stabilisation in a shooting range soil: mobility and phytotoxicity. J Hazard Mater 141:378–387CrossRefGoogle Scholar
  47. Steely S, Amarasiriwardena D, Xing B (2007) An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils. Environ Pollut 148:590–598CrossRefGoogle Scholar
  48. Strobel BW, Hansen HCB, Borggaard OK, Andersen MK, Raulund-Rasmussen K (2001) Cadmium and copper release kinetics in relation to afforestation of cultivated soil. Geochim Cosmochim Acta 65:1233–1242CrossRefGoogle Scholar
  49. Strømseng AE, Ljønes M, Bakka L, Mariussen E (2009) Episodic discharge of lead, copper and antimony from a Norwegian small arm shooting range. J Environ Monitor 11:1259–1267CrossRefGoogle Scholar
  50. Theodoratos P, Papassiopi N, Xenidis A (2002) Evaluation of monobasic calcium phosphate for the immobilization of heavy metals in contaminated soils from Lavrion. J Hazard Mater B 94:135–146CrossRefGoogle Scholar
  51. Tschan M, Robinson B, Schulin R (2008) Antimony uptake by Zea mays (L.) and Helianthus annuus (L.) from nutrient solution. Environ Geochem Health 30:187–191CrossRefGoogle Scholar
  52. Turpeinen R, Salminen J, Kairesalo T (2000) Mobility and bioavailability of lead in contaminated boreal forest soil. Environ Sci Technol 34:5152–5156CrossRefGoogle Scholar
  53. USEPA (United States Environmental Protection Agency) (2001) Best management practices for lead at outdoor shooting ranges, EPA-902-B-01-001. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  54. Wersin P, Johnson CA, Furrer G (2002) Antimony contamination in soil and groundwater by shooting range activities. Geochim Cosmochim Ac 66:A829Google Scholar
  55. Xifra-Olivé I (2006) Mobility of lead and antimony in shooting range soils. Swiss Federal Institute of Technology. Doctoral Thesis ETH No.16689Google Scholar
  56. Zhao LYL, Schulin R, Weng L, Nowack B (2007) Coupled mobilization of dissolved organic matter and metals (Cu and Zn) in soil columns. Geochim Cosmochim Ac 71:3407–3418CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Hector M. Conesa
    • 1
  • Mirjam Wieser
    • 2
  • Björn Studer
    • 2
  • Maria N. González-Alcaraz
    • 1
  • Rainer Schulin
    • 2
  1. 1.Departamento de Ciencia y Tecnología AgrariaUniversidad Politécnica de CartagenaCartagenaSpain
  2. 2.Institute of Terrestrial Ecosystems, ETH ZürichUniversitaestrasse 16ZurichSwitzerland

Personalised recommendations