Advertisement

Journal of Soils and Sediments

, 11:1000 | Cite as

Sensitivity of Eisenia fetida in comparison to Aporrectodea caliginosa and Lumbricus terrestris after imidacloprid exposure. Body mass change and histopathology

  • Nils DittbrennerEmail author
  • Hannah Schmitt
  • Yvan Capowiez
  • Rita Triebskorn
SOILS, SEC 4 • ECOTOXICOLOGY • RESEARCH ARTICLE

Abstract

Purpose

The use of only one or a few species—representing an entire taxon—in ecotoxicological standard tests poses risk of underestimating the impact of toxicants on the environment. In earthworm ecotoxicity tests, the species Eisenia fetida or Eisenia andrei are commonly used, and there is evidence that these species respond relatively insensitive towards environmental pollution. With the present study, we wanted to evaluate the risk of underestimating effects of the insecticide imidacloprid in soil organisms by comparing E. fetida with two other earthworm species (Aporrectodea caliginosa and Lumbricus terrestris) regarding their sensitivities towards soil contaminated with this widely used insecticide.

Materials and methods

In laboratory experiments, the specimens were individually exposed to various concentrations of the pesticide (0.2, 0.66, 2 and 4 mg kg−1 dry weight (DW)) for 1, 7 and 14 days. Afterwards, histopathological changes in the midgut, chloragogenous tissue and skin, as well as body mass changes, were assessed.

Results and discussion

While significant changes in body mass in E. fetida and A. caliginosa occurred after exposure to imidacloprid concentrations as low as 0.2 (7 days) and 0.66 mg kg−1 DW (14 days), significant body mass changes in L. terrestris observed to 2 and 4 mg kg−1 DW, for 7 and 14 days of exposure, respectively. The histopathological examinations revealed that significant cellular changes already occurred after 24 h exposure to the lowest test concentrations in all species, but the degree of detrimental effects as well as species-specific differences were dependent on the monitor tissue. In general, E. fetida seemed to be more sensitive than L. terrestris concerning cellular alterations, but the hierarchy in species-specific differences was less obvious than for body mass change.

Conclusions

Even if E. fetida proved to be the most sensitive species in this study, general differences in sensitivity make evident that always a range of species—being representatives of an animal taxon—in ecotoxicological tests should be tested in order to avoid underestimations of effects. In the case of testing only one species, an increase of safety factors should be considered. Since effects already occurred at environmentally relevant concentrations, the use of imidacloprid in agriculture might be of great concern.

Keywords

Body mass change Earthworms Histopathology Imidacloprid Standard test organism 

Notes

Acknowledgements

The first author thank the FAZIT-Stiftung and Teufel-Stiftung as well as the Evangelisches Studienwerk for financial support. All authors are grateful to Kathy Breitweg for the proof reading and to the anonymous reviewers for their meaningful questions and suggestions.

References

  1. Bouché MB (1992) Earthworm species and ecotoxicological studies. In: Greig-Smith PW, Becker H, Edwards PJ, Heimbach F (eds) Ecotoxicology of earthworms. Intercept, Andover, pp 20–35Google Scholar
  2. Cajaraville MP, Robledo Y, Etxeberria M, Marigomez I (1995) Cellular biomarkers as useful tools in the biological monitoring of environmental pollution: molluscan digestive lysosomes. In: Cajaraville MP (ed) Cell biology in environmental toxicology. University of the Basque Country Press, Bilbao, Spain, pp 29–55Google Scholar
  3. Capowiez Y, Bérard A (2006) Assessment of the effects of imidacloprid on the behavior of two earthworm species (Aporrectodea nocturna and Allolobophora icterica) using 2D terraria. Ecotoxicol Environ Saf 64:198–206CrossRefGoogle Scholar
  4. Capowiez Y, Bastardie F, Costagliola G (2006) Sublethal effects of imidacloprid on the burrowing behaviour of two earthworm species: modifications of the 3D burrow systems in artificial soil cores and consequences on gas diffusion in soil. Soil Biol Biochem 38:285–293CrossRefGoogle Scholar
  5. Capowiez Y, Dittbrenner N, Rault M, Triebskorn R, Hedde M, Mazzia C (2010) Earthworm cast production as a new behavioural biomarker for toxicity testing. Environ Pollut 158:388–393CrossRefGoogle Scholar
  6. Capowiez Y, Rault M, Costagliola G, Mazzia C (2005) Lethal and sublethal effects of imidacloprid on two earthworm species (Aporrectodea nocturna and Allobophora icterica). Biol Fertil Soils 41:135–143CrossRefGoogle Scholar
  7. Capowiez Y, Rault M, Mazzia C, Belzunces L (2003) Earthworm behaviour as a biomarker—a case study using imidacloprid. Pedobiologia 47:542–547Google Scholar
  8. Chakra Reddy N, Venkateswara Rao J (2008) Biological response of earthworm Eisenia foetida (Savigny) to an organophosphorous pesticide, profenofos. Ecotoxicol Environ Saf 71:574–582CrossRefGoogle Scholar
  9. Christensen O, Mather J (1994) Earthworms as ecotoxicological test-organisms. Bekaempelsesmiddelforskning fra Miljostyrelsen. No. 5. Miljoministeriet Miljostyrelsen, Copenhagen, p 36Google Scholar
  10. Dittbrenner N, Capowiez Y, Köhler H-R, Triebskorn R (2011b) Stress protein response (Hsp70) and avoidance behaviour in Eisenia fetida, Aporrectodea caliginosa and Lumbricus terrestris when exposed to imidacloprid. J Soils Sediments (in press)Google Scholar
  11. Dittbrenner N, Moser I, Triebskorn R, Capowiez Y (2011a) Assessment of short and long-term effects of imidacloprid on the burrowing behaviour of two earthworm species (Aporrectodea caliginosa and Lumbricus terrestris) by using 2D and 3D post-exposure techniques. Chemosphere. doi: 10.1016/j.chemosphere.2011.05.011
  12. Dittbrenner N, Triebskorn R, Moser I, Capowiez Y (2010) Physiological and behavioural effects of imidacloprid on two ecologically relevant earthworm species (Lumbricus terrestris and Aporrectodea caliginosa). Ecotoxicology 19:1567–1573CrossRefGoogle Scholar
  13. E.E.C. (2003) SANCO/10329. Guidance document on terrestrial ecotoxicology under council directive 91/414/EEC. Rev. 2Google Scholar
  14. Edwards CA, Bohlen PJ (1992) The effect of toxic chemicals on earthworms. Rev Environ Contam Toxicol 125:23–99Google Scholar
  15. Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Chapman and Hall, London, p 426Google Scholar
  16. Edwards CA, Lofty JR (1972) Biology of earthworms. Chapman and Hall Ltd., London, p 60Google Scholar
  17. Edwards PJ, Coulson JM (1992) Choice of earthworm species for laboratory tests. In: Greig-Smith PW, Becker H, Edwards PJ, Heimbach F (eds) Ecotoxicology of earthworms. Intercept, Andover, pp 36–43Google Scholar
  18. Fischer E, Molnár L (1992) Environmental aspects of the chloragogenous tissue of earthworms. Soil Biol Biochem 24:1723–1727CrossRefGoogle Scholar
  19. Fitzpatrick LC, Sassani R, Venables BJ, Goven AJ (1992) Comparative toxicity of polychlorinated biphenyls to earthworms Eisenia foetida and Lumbricus terrestris. Environ Pollut 77:65–69CrossRefGoogle Scholar
  20. Fründ H-C, Butt K, Capowiez Y, Eisenhauer N, Emmerling C, Ernst G, Potthoff M, Schädler M, Schrader S (2010) Using earthworms as model organisms in the laboratory: recommendations for experimental implementations. Pedobiologia 53:119–125CrossRefGoogle Scholar
  21. Gomez-Eyles JL, Svendsen C, Lister L, Martin H, Hodson M, Spurgeon JD (2009) Measuring and modelling mixture toxicity of imidacloprid and thiacloprid on Caenorhabditis elegans and Eisenia fetida. Ecotoxicol Environ Saf 72:71–79CrossRefGoogle Scholar
  22. Günther A, Greven H (1990) Increase of the number of epidermal gland-cells: an unspecific response of Lumbricus terrestris L (Lumbricidae: Oligochaeta) to different environmental stressors. Zoologischer Anzeiger 225:278–286Google Scholar
  23. Gupta SK, Sundararaman V (1988) Carbaryl induced changes in the earthworm Pheretima posthuma. Indian J Exp Biol 26:688–693Google Scholar
  24. ISO (2008) Avoidance test for determining the quality of soils and effects of chemicals on behaviour - Part 1: test with earthworms (Eisenia fetida and Eisenia andrei). ISO guideline 17512-1, Geneva, SwitzerlandGoogle Scholar
  25. Köhler H-R, Triebskorn R (2004) Stress im Boden: Früherkennung ökotoxikologischer Effekte durch Biomarker. Biologie in unserer Zeit 34:240–248CrossRefGoogle Scholar
  26. Kreutzweiser DP, Thompson DG, Scarr TA (2009) Imidacloprid in leaves from systemically treated trees may inhibit litter breakdown by non-target invertebrates. Ecotoxicol Environ Saf 72:1053–1057CrossRefGoogle Scholar
  27. Kula H, Kokta C (1992) Side effects of selected pesticides on earthworms under laboratory and field conditions. Soil Biol Biochem 24:1711–1714CrossRefGoogle Scholar
  28. Lavelle P, Barois I, Martin A, Zaidi Z, Schaefer R (1989) Management of earthworm populations in agro-ecosystems: a possible way to maintain soil quality? In: Clarholm M, Bergström L (eds) Ecology of arable land. Kluwer, Dordrecht, pp 109–122Google Scholar
  29. Luo Y, Zang Y, Zhong Y, Kong Z (1999) Toxicological study of two novel pesticides on earthworm Eisenia foetida. Chemosphere 39:2347–2356CrossRefGoogle Scholar
  30. Ma W, Bodt J (1993) Differences in toxicity of the insecticide chlorpyrifos to six species of earthworms (Oligochaeta, Lumbricidae) in standardized soil tests. Bull Environ Contam Toxicol 50:864–870CrossRefGoogle Scholar
  31. McCredie T, Parker L (1992) The role of earthworms in Western Australia agriculture. J Agr West Aust 33:160–165Google Scholar
  32. Morgan AJ, Turner MP (2005) Quantitative ultrastructure of metal-sequestering cells reflects intersite and interspecies differences in earthworm metal burdens. Arch Environ Contam Toxicol 49:45–52CrossRefGoogle Scholar
  33. Morowati M (2000) Histochemical and histopathological study of the intestine of the earthworm Pheretima elongata exposed to a field dose of the herbicide glyphosate. Environmentalist 20:105–111CrossRefGoogle Scholar
  34. Mostert MA, Schoeman AS, Van der Merwe M (2000) The toxicity of five insecticides to earthworms of the Pheretima group, using an artificial soil test. Pest Manag Sci 58:1093–1097CrossRefGoogle Scholar
  35. Mostert MA, Schoeman AS, Van der Merwe M (2002) The relative toxicity of insecticides to earthworms of the Pheretima group (Oligochaeta). Pest Manag Sci 58:446–450CrossRefGoogle Scholar
  36. Muthukaruppan G, Paramasamy G (2010) Effect of butachlor herbicide on earthworm Eisenia fetida—its histological perspicuity. Appl Environ Soil Sci. doi: 10.1155/2010/850758
  37. Muthukaruppan G, Janardhanan S, Vijayalakshmi G (2005) Sublethal toxicity of the herbicide butachlor on the earthworm Perionyx sansibaricus and its histological changes. Journal of Soils and Sediments 5:82–86CrossRefGoogle Scholar
  38. OECD (1984) Guidelines for testing of chemicals. 207: earthworm acute toxicity tests. Organization for Economic Cooperation and Development, ParisCrossRefGoogle Scholar
  39. OECD (2004) Guidelines for testing of chemicals. 222: earthworm reproduction test (Eisenia fetida/Eisenia andrei). Organization for Economic Cooperation and Development, ParisGoogle Scholar
  40. Oi M (1999) Time-dependant sorption of imidacloprid in two different soils. J Agric Food Chem 47:327–332CrossRefGoogle Scholar
  41. Olvera-Velona A, Capowiez Y, Mascle O, Ortiz-Hernandez L, Benoit P (2008) Assessment of the toxicity of ethyl-parathion to earthworms (Aporrectodea caliginosa) using behavioural, physiological and biochemical markers. Appl Soil Ecol 40:476–483CrossRefGoogle Scholar
  42. Prento P (1987) Distribution of 20 enzymes in the midgut region of the earthworm, Lumbricus terrestris L., with particular emphasis on the physiological role of the chloragog tissue. Comp Biochem Physiol 87A:135–142CrossRefGoogle Scholar
  43. Sabbagh GJ, Lenz MF, Fisher JM, Arthur EL (2002) Significance of binding on imidacloprid degradation in soils, and effects of soil characteristics on imidacloprid adsorption capacity, vol 200327. Bayer CropScience, Stilwell, KansasGoogle Scholar
  44. Scheu S (1987) The role of substrate feeding earthworms (Lumbricidae) for bioturbation in a beechwood soil. Oecologia 72:192–196CrossRefGoogle Scholar
  45. Spurgeon DJ, Weeks JM (1998) Evaluation of factors influencing results from laboratory toxicity tests with earthworms. In: Sheppard SC, Bembridge JD, Holmstrup M, Posthuma L (eds) Advances in earthworm ecotoxicology. SETAC, Pensacola, pp 15–25Google Scholar
  46. Triebskorn R, Köhler H-R (2003) Cellular and molecular stress indicators as tools to assess effects and side effects in slugs. Br Crop Prot Counc Symp Proc 80:69–74Google Scholar
  47. Triebskorn R, Köhler H-R, Honnen W, Schramm M, Adams SM, Müller EF (1997) Induction of heat shock proteins, changes in liver ultrastructure, and alterations of fish behaviour: are these biomarkers related and are they useful to reflect the state of pollution in the field? Journal of Aquatic Ecosystem Stress and Recovery 6:57–73CrossRefGoogle Scholar
  48. Tomlin AD (1992) Behaviour as a source of earthworm susceptibility to ecotoxicants. In: Greig-Smith PW, Becker H, Edwards PJ, Heimbach F (eds) Ecotoxicology of earthworms. Intercept, Andover, pp 116–125Google Scholar
  49. Venkateswara Rao J, Kavitha P, Padmanabha Rao A (2003) Comparative toxicity of tetra ethyl lead and lead oxide to earthworms (Eisenia foetida (Savigny)). Environ Res 92:271–276CrossRefGoogle Scholar
  50. Vogel J, Seifert G (1992) Histological changes in the chloragogen tissue of the earthworm Eisenia fetida after administration of sublethal concentrations of different fluorides. J Invertebr Pathol 60:192–196CrossRefGoogle Scholar
  51. Wielgus-Serafinska E (1979) Influence of lead poisoning and ultrastructural changes in the body wall of Eisenia foetida (Savigny), Oligochaeta. 1. Short action of different concentrations of lead and ultrastructural changes in the cells of the body wall. Folia Histochem Cytochem 17:181–188Google Scholar
  52. Zwahlen C, Hilbeck A, Howald R, Nentwig W (2003) Effects of transgenic Bt corn litter on the earthworm Lumbricus terrestris. Mol Ecol 12:1077–1086CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Nils Dittbrenner
    • 1
    Email author
  • Hannah Schmitt
    • 1
  • Yvan Capowiez
    • 2
  • Rita Triebskorn
    • 1
    • 3
  1. 1.Animal Physiological EcologyInstitute of Evolution and Ecology, University of TübingenTübingenGermany
  2. 2.INRA, UR1115Plantes et Systèmes Horticoles, Domaine Saint PaulAvignon Cedex 09France
  3. 3.Steinbeis Transfer-Center for Ecotoxicology and EcophysiologyRottenburgGermany

Personalised recommendations