Journal of Soils and Sediments

, Volume 11, Issue 6, pp 1099–1114

Anthropogenic pollutants affect ecosystem services of freshwater sediments: the need for a “triad plus x” approach

  • Sabine Ulrike Gerbersdorf
  • Henner Hollert
  • Markus Brinkmann
  • Silke Wieprecht
  • Holger Schüttrumpf
  • Werner Manz



Freshwater sediments and their attached microbial communities (biofilms) are essential features of rivers and lakes, providing valuable ecosystem services such as nutrient recycling or self-purification which extend beyond the aquatic environment. Anthropogenic pollutants, whether from the industrial era or as a result of our contemporary lifestyles, can negatively affect these functions with hitherto unknown consequences on ecology, the economy and human health. Thus far, the singular view of the involved disciplines such as ecotoxicology, environmental microbiology, hydrology and geomorphology has prevented a deeper understanding of this emerging issue.

Main features

This paper discusses briefly the progressions and the state-of-the-art methods within the disciplines of concern related to contaminated sediments, ranging from ecotoxicological test systems, microbiological/molecular approaches to unravel changes of microbial ecosystems, up to the modelling of sediment transport and sorption/desorption of associated pollutants. The first bilateral research efforts on contaminated sediments include efforts to assess ecotoxicological sediment risk including sediment mobility (i.e. ecotoxicology and engineering), enhance bioremediation potential (i.e. microbiology and ecotoxicology) or to understand biostabilisation processes of sediments by microbial assemblages (i.e. microbiology and engineering).

Conclusions and perspectives

In freshwater habitats, acute, chronic and mechanism-specific toxic effects on organisms, shifts in composition, structure and functionality of benthic microbial communities, as well as the obstruction of important ecosystem services by continuously discharged and long-deposited pollutants, should be related to the in situ sediment dynamics. To achieve an improved understanding of the ecology of freshwater sediments and the impairment of their important ecosystem functions by human-derived pollutants, we suggest a “triad plus x” approach combining advanced methods of ecotoxicology, environmental microbiology and engineering science.


Biofilm Freshwater Interdisciplinary approach Management of sediments Pollutants Risk assessment 


  1. Ahlf W, Calmano W, Erhard J, Förstner U (1989) Comparison of 5 bioassay techniques for assessing sediment-bound contaminants. Hydrobiologia 188:285–289CrossRefGoogle Scholar
  2. Ahlf W, Hollert H, Neumann-Hensel H, Ricking M (2002) A guidance for the assessment and evaluation of sediment quality: a German approach based on ecotoxicological and chemical measurements. J Soils Sediments 2:37–42CrossRefGoogle Scholar
  3. Ames BN, McCann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with Salmonella–mammalian–microsome mutagenicity test. Mutat Res 31:347–363Google Scholar
  4. Babut M, Oen A, Hollert H, Apitz S, Heise S, White S (2007) Prioritisation at catchment scale, risk ranking at local scale: suggested approaches. In: Heise S (ed) Sustainable management of sediment resources: risk management and communication. Elsevier, Amsterdam, pp 107–150Google Scholar
  5. Battin TJ, Kaplan LA, Newbold JD, Cheng XH, Hansen C (2003a) Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl Environ Microbiol 69:5443–5452CrossRefGoogle Scholar
  6. Battin TJ, Kaplan LA, Newbold JD, Hansen CME (2003b) Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426:439–442CrossRefGoogle Scholar
  7. Belleudy P, Sogreah (2000) Numerical simulation of sediment mixture deposition. Part 1: analysis of a flume experiment. J Hydrol Res 38:417–425CrossRefGoogle Scholar
  8. Black KS, Tolhurst TJ, Paterson DM, Hagerthey SE (2002) Working with natural cohesive sediments. J Hydraul Eng—ASCE 128:2–8CrossRefGoogle Scholar
  9. Boeckelmann U, Manz W, Neu TR, Szewzyk U (2000) Characterization of the microbial community of lotic organic aggregates ('river snow') in the Elbe River of Germany by cultivation and molecular methods. FEMS Microbiol Ecol 33:157–170Google Scholar
  10. Borsie B (2006) Biological influence on sediment transport and bed composition for the Western Wadden Sea. University of TwenteGoogle Scholar
  11. Brack W, Klamer HJC, de Ada ML, Barcelo D (2007) Effect-directed analysis of key toxicants in European river basins—a review. Environ Sci Pollut Res 14:30–38CrossRefGoogle Scholar
  12. Brinkmann M, Hudjetz S, Cofalla C, Roger S, Kammann U, Giesy JP, Hecker M, Wiseman S, Zhang X, Wölz J, Schüttrumpf H, Hollert H (2010) A combined hydraulic and toxicological approach to assess re-suspended sediments during simulated flood events. Part I—multiple biomarkers in rainbow trout. J Soils Sediments 10:1347–1361CrossRefGoogle Scholar
  13. Buffington JM (1999) The legend of A.F. Shields. J Hydraul Eng—ASCE 125:376–387CrossRefGoogle Scholar
  14. Burton GA (1991) Assessing the toxicity of freshwater sediments. Environ Toxicol Chem 10:1585–1627CrossRefGoogle Scholar
  15. Calmano W, Hong J, Forstner U (1993) Binding and mobilization of heavy-metals in contaminated sediments affected by pH and redox potential. Water Sci Technol 28:223–235Google Scholar
  16. Chapman PM (1990) The Sediment Quality Triad approach to determining pollution-induced degradation. Sci Total Environ 97(98):815–825Google Scholar
  17. Chapman PM (2000) The Sediment Quality Triad: then, now and tomorrow. Environ Sci Pollut Res 13:351–356Google Scholar
  18. Chapman PM, Hollert H (2006) Should the sediment triad become a tetrad, pentad or possibly even a hexad? J Soils Sediments 6:4–8CrossRefGoogle Scholar
  19. Chapman PM, Ho KT, Munns WR, Solomon K, Weinstein MP (2002) Issues in sediment toxicity and ecological risk assessment. Mar Pollut Bull 44:271–278CrossRefGoogle Scholar
  20. Darby SE (2010) Reappraising the geomorphology–ecology link. Earth Surf Processes Landforms 35:368–371CrossRefGoogle Scholar
  21. de Brouwer JFC, Bjelic S, de Deckere E, Stal LJ (2000) Interplay between biology and sedimentology in a mudflat (Biezelingse Ham, Westerschelde, The Netherlands). Cont Shelf Res 20:1159–1177CrossRefGoogle Scholar
  22. Denkhaus E, Meisen S, Telgheder U, Wingender J (2007) Chemical and physical methods for characterisation of biofilms. Microchim Acta 158:1–27CrossRefGoogle Scholar
  23. Dercova K, Cicmanova J, Lovecka P, Demnerova K, Mackova M, Hucko P, Kusnir P (2008) Isolation and identification of PCB-degrading microorganisms from contaminated sediments. Int Biodeterior Biodegrad 62:219–225CrossRefGoogle Scholar
  24. Dermott R, Munawar M (1992) A simple and sensitive assay for evaluation of sediment toxicity using Lumbriculus variegatus (Müller). Hydrobiologia 235–236:407–414CrossRefGoogle Scholar
  25. DIN 38412-48 (2002) Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlamm-untersuchung: Testverfahren mit Wasserorganismen (Gruppe L) Teil 48: Arthrobacter globiformis Kontakttest für kontaminierte Feststoffe. Deutsches Institut für Normierung e. V., BerlinGoogle Scholar
  26. Dobretsov S, Dahms HU, Huang YL, Wahl M, Qian PY (2007) The effect of quorum-sensing blockers on the formation of marine microbial communities and larval attachment. FEMS Microbiol Ecol 60:177–188CrossRefGoogle Scholar
  27. Droppo IG (2001) Rethinking what constitutes suspended sediment. Hydrol Processes 15:1551–1564CrossRefGoogle Scholar
  28. Droppo IG (2004) Structural controls on floc strength and transport. Can J Civ Eng 31:569–578CrossRefGoogle Scholar
  29. Dynes JJ, Lawrence JR, Korber DR, Swerhone GDW, Leppard GG, Hitchcock AP (2006) Quantitative mapping of chlorhexidine in natural river biofilms. Sci Total Environ 369:369–383CrossRefGoogle Scholar
  30. Edlund A, Jansson JK (2006) Changes in active bacterial communities before and after dredging of highly polluted Baltic Sea sediments. Appl Environ Microbiol 72:6800–6807CrossRefGoogle Scholar
  31. Einsporn S, Broeg K, Koehler A (2005) The Elbe flood 2002—toxic effects of transported contaminants in flatfish and mussels of the Wadden Sea. Mar Pollut Bull 50:423–429CrossRefGoogle Scholar
  32. Ellis RJ, Morgan P, Weightman AJ, Fry JC (2003) Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol 69:3223–3230CrossRefGoogle Scholar
  33. Feiler U, Ahlf W, Hoess S, Hollert H, Neumann-Hensel H, Meller M, Weber J, Heininger P (2005) The SeKT Joint Research Project: definition of reference conditions, control sediments and toxicity thresholds for limnic sediment contact tests. Environ Sci Pollut Res 12:257–258CrossRefGoogle Scholar
  34. Fernandez AS, Hashsham SA, Dollhopf SL, Raskin L, Glagoleva O, Dazzo FB, Hickey RF, Criddle CS, Tiedje JM (2000) Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl Environ Microbiol 66:4058–4067CrossRefGoogle Scholar
  35. Flemming HC, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs)—part I: structural and ecological aspects. Water Sci Technol 43:1–8Google Scholar
  36. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633Google Scholar
  37. Förstner U, Heise S, Schwartz R, Westrich B, Ahlf W (2004) Historical contaminated sediments and soils at the river basin scale—examples from the Elbe River catchment area. J Soils Sediments 4:247–260CrossRefGoogle Scholar
  38. Gabrielson J, Kuhn I, Colque-Navarro P, Hart M, Iversen A, McKenzie D, Mollby R (2003) Microplate-based microbial assay for risk assessment and (eco)toxic fingerprinting of chemicals. Anal Chim Acta 485:121–130CrossRefGoogle Scholar
  39. Garland J (1999) Potential and limitations of BIOLOG for microbial community analysis. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, pp 1–7Google Scholar
  40. Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359Google Scholar
  41. Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747Google Scholar
  42. Gerbersdorf SU, Jancke T, Westrich B (2005) Physico-chemical and biological sediment properties determining erosion resistance of contaminated riverine sediments—temporal and vertical pattern at the Lauffen reservoir/River Neckar, Germany. Limnologica 35:132–144Google Scholar
  43. Gerbersdorf SU, Jancke T, Westrich B (2007) Sediment properties for assessing the erosion risk of contaminated riverine sites. J Soils Sediments 7:25–35CrossRefGoogle Scholar
  44. Gerbersdorf SU, Jancke T, Westrich B, Paterson DM (2008a) Microbial stabilization of riverine sediments by extracellular polymeric substances. Geobiology 6:57–69Google Scholar
  45. Gerbersdorf SU, Manz W, Paterson DM (2008b) The engineering potential of natural benthic bacterial assemblages in terms of the erosion resistance of sediments. FEMS Microbiol Ecol 66:282–294CrossRefGoogle Scholar
  46. Gerbersdorf SU, Bittner R, Lubarsky H, Manz W, Paterson DM (2009a) Microbial assemblages as ecosystem engineers of sediment stability. J Soils Sediments 9:640–652CrossRefGoogle Scholar
  47. Gerbersdorf SU, Westrich B, Paterson DM (2009b) Microbial extracellular polymeric substances (EPS) in fresh water sediments. Microb Ecol 58:334–349CrossRefGoogle Scholar
  48. Giesy JP, Kannan K (2002) Perfluorochemical surfactants in the environment. Environ Sci Technol 36:146A–152ACrossRefGoogle Scholar
  49. Giger W (2009) The Rhine red, the fish dead—the 1986 Schweizerhalle disaster, a retrospect and long-term impact assessment. Environ Sci Pollut Res 16:98–111CrossRefGoogle Scholar
  50. Ginige MP, Hugenholtz P, Daims H, Wagner M, Keller J, Blackall LL (2004) Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization–microautoradiography to study a methanol-fed denitrifying microbial community. Appl Environ Microbiol 70:588–596CrossRefGoogle Scholar
  51. Grote M, Altenburger R, Brack W, Moschutz S, Mothes S, Michael C, Narten CB, Paschke A, Schirmer K, Walter H, Wennrich R, Wenzel KD, Schuurmann G (2005) Ecotoxicological profiling of transect river Elbe sediments. Acta Hydrochimica Et Hydrobiologica 33:555–569CrossRefGoogle Scholar
  52. Haag I, Westrich B (2002) Processes governing river water quality identified by principal component analysis. Hydrol Processes 16:3113–3130CrossRefGoogle Scholar
  53. Haag I, Kern U, Westrich B (2001) Erosion investigation and sediment quality measurements for a comprehensive risk assessment of contaminated aquatic sediments. Sci Total Environ 266:249–257CrossRefGoogle Scholar
  54. Hallare A, Seiler T, Hollert H (2011) The versatile, changing, and advancing roles of fish in sediment toxicity assessment—a review. J Soils Sediments 11:141–173CrossRefGoogle Scholar
  55. Hassanshahian M, Emtiazi G, Kermanshahi RK, Cappello S (2010) Comparison of oil degrading microbial communities in sediments from the Persian Gulf and Caspian Sea. Soil Sediment Contam 19:277–291CrossRefGoogle Scholar
  56. Hecker M, Hollert H (2009) Effect-directed analysis (EDA) in aquatic ecotoxicology: state of the art and future challenges. Environ Sci Pollut Res 16:607–613CrossRefGoogle Scholar
  57. Hollert H, Dürr M, Haag I, Winn N, Holtey-Weber R, Kern U, Färber H, Westrich B, Erdinger L, Braunbeck T (2000) A combined hydraulic and in vitro bioassay approach to assess the risk of erosion and ecotoxicological implications of contaminated sediments in a lock-regulated river system. In: BfG (ed) Sediment assessement in European River Basins. Reihe: Mitteilungen der Bundesanstalt für Gewässerkunde, Koblenz, Berlin, pp 156–160Google Scholar
  58. Hollert H, Keiter S, König N, Rudolf M, Ulrich M, Braunbeck T (2003) A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos. J Soils Sediments 3:197–207CrossRefGoogle Scholar
  59. Hollert H, Dürr M, Holtey-Weber R, Islinger M, Brack W, Färber H, Erdinger L, Braunbeck T (2005) Endocrine disruption of water and sediment extracts in a non-radioactive dot blot/RNAse protection-assay using isolated hepatocytes of rainbow trout. Deficiencies between bioanalytical effectiveness and chemically determined concentrations and how to explain them. Environ Sci Pollut Res 12:347–360CrossRefGoogle Scholar
  60. Hollert H, Dürr M, Haag I, Wölz J, Hilscherova K, Blaha L, Gerbersdorf SU (2007) Influence of hydrodynamics on sediment ecotoxicity. In: Westrich B, Förstner U (eds) Sediment dynamics and pollutant mobility in rivers. Springer, Berlin, pp 401–416Google Scholar
  61. Holzhauer H (2003) Biogeomorphology, small activities with large effects? University of TwenteGoogle Scholar
  62. Hsu P, Matthai A, Heise S, Ahlf W (2007) Seasonal variation of sediment toxicity in the Rivers Dommel and Elbe. Environ Pollut 148:817–823CrossRefGoogle Scholar
  63. IKSE IKzSdE (2004) Dokumentation des Hochwassers vom August 2002 im Einzugsgebiet der ElbeGoogle Scholar
  64. ISO 11348-1 (1998) Wasserbeschaffenheit—Bestimmung der Hemmwirkung von Wasserproben auf die Lichtemission von Vibrio fischeri (Leuchtbakterientest)—Teil 1: Verfahren mit frisch gezüchteten BakterienGoogle Scholar
  65. Jepsen R, Roberts J, Lick W (1997) Effects of bulk density on sediment erosion rates. Water Air Soil Pollut 99:21–31Google Scholar
  66. Jonker MTO, Suijkerbuijk MPW, Schmitt H, Sinnige TL (2009) Ecotoxicological effects of activated carbon addition to sediments. Environ Sci Technol 43:5959–5966CrossRefGoogle Scholar
  67. Kammann U, Lang T, Vobach M, Wosniok W (2005) Ethoxyresorufin-O-deethylase (EROD) activity in dab (Limanda limanda) as biomarker for marine monitoring. Environ Sci Pollut Res Int 12:140–145CrossRefGoogle Scholar
  68. Karnahl JA (2009) 2D numerical modeling of multifractional suspended sediment transport and pollutant transport in rivers. University Stuttgart, Stuttgart, 158 ppGoogle Scholar
  69. Keiter S, Grund S, van Bavel B, Hagberg J, Engwall M, Kammann U, Klempt M, Manz W, Olsman H, Braunbeck T, Hollert H (2008) Activities and identification of aryl hydrocarbon receptor agonists in sediments from the Danube River. Anal Bioanal Chem 390:2009–2019CrossRefGoogle Scholar
  70. Kostanjsek R, Lapanje A, Drobne D, Perovic S, Perovic A, Zidar P, Strus J, Hollert H, Karaman G (2005) Bacterial community structure analyses to assess pollution of water and sediments in the Lake Shkodra/Skadar, Balkan Peninsula. Environ Sci Pollut Res Int 12:361–368CrossRefGoogle Scholar
  71. Kuehlers D, Bethge E, Hillebrand G, Hollert H, Fleig M, Lehmann B, Maier D, Maier M, Mohrlok U, Wolz J (2009) Contaminant transport to public water supply wells via flood water retention areas. Natural Hazards Earth System Sci 9:1047–1058CrossRefGoogle Scholar
  72. Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use—present knowledge and future challenges. J Environ Management 90:2354–2366CrossRefGoogle Scholar
  73. Lachmund C, Köcher B, Manz W, Heininger P (2003) Chemical and microbiological in situ characterization of benthic communities in sediments with different contamination levels. J Soils Sediments 3:188–196CrossRefGoogle Scholar
  74. Larson F, Lubarsky H, Paterson DM, Gerbersdorf SU (2009) Surface adhesion measurements in aquatic biofilms using magnetic particle induction: MagPI. Limnol Oceanogr: Methods 7:490–497CrossRefGoogle Scholar
  75. Lau YL, Droppo IG (2000) Influence of antecedent conditions on critical shear stress of bed sediments. Water Res 34:663–667CrossRefGoogle Scholar
  76. Lawrence JR, Zhu B, Swerhone GDW, Roy J, Wassenaar LI, Topp E, Korber DR (2009) Comparative microscale analysis of the effects of triclosan and triclocarban on the structure and function of river biofilm communities. Sci Total Environ 407:3307–3316CrossRefGoogle Scholar
  77. Le Hir P, Monbet Y, Orvain F (2007) Sediment erodability in sediment transport modelling: can we account for biota effects? Cont Shelf Res 27:1116–1142CrossRefGoogle Scholar
  78. Lee N, Nielsen PH, Andreasen KH, Juretschko S, Nielsen JL, Schleifer KH, Wagner M (1999) Combination of fluorescent in situ hybridization and microautoradiography—a new tool for structure–function analyses in microbial ecology. Appl Environ Microbiol 65:1289–1297Google Scholar
  79. Liss W, Ahlf W (1997) Evidence from whole-sediment, porewater, and elutriate testing in toxicity assessment of contaminated sediments. Ecotoxicol Environ Safe 36:140–147CrossRefGoogle Scholar
  80. Liss SN, Droppo IG, Flannigan DT, Leppard GG (1996) Floc architecture in wastewater and natural riverine systems. Environ Sci Technol 30:680–686CrossRefGoogle Scholar
  81. Liu Y, Fang HHP (2003) Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge. Crit Rev Env Sci Tech 33:237–273CrossRefGoogle Scholar
  82. Maier M, Kühlers D, Brauch H-J, Fleig M, Maier D, Jirka GH, Mohlock U, Bethge E, Bernhart HH, Lehmann B, Hillebrand G, Wölz J, Hollert H (2005) RIMAX-Verbundprojekt HoT—Spannungsfeld Hochwasserrückhaltung und Trinkwasser-versorgung: Vermeidung von Nutzungskonflikten. Umweltwiss Schadst Forsch 17:248–249CrossRefGoogle Scholar
  83. Manz W (1999) In situ analysis of microbial biofilms by rRNA-targeted oligonucleotide probes. In: Doyle RJ (ed) Biofilms. Academic Press, San Diego, pp 79–91CrossRefGoogle Scholar
  84. Manz W, Wendt-Potthoff K, Neu TR, Szewzyk U, Lawrence JR (1999) Phylogenetic composition, spatial structure, and dynamics of lotic bacterial biofilms investigated by fluorescent in situ hybridization and confocal laser scanning microscopy. Microb Ecol 37:225–237CrossRefGoogle Scholar
  85. Manz W, Arp G, Schumann-Kindel G, Szewzyk U, Reitner J (2000) Widefield deconvolution epifluorescence microscopy combined with fluorescence in situ hybridization reveals the spatial arrangement of bacteria in sponge tissue. J Microbiol Meth 40:125–134CrossRefGoogle Scholar
  86. Manz W, Wagner M, Kalmbach S (2001) Assessment of metabolic potential of biofilm-associated bacteria. In: Doyle RJ (ed) Microbial growth in biofilms, part A: developmental and molecular biological aspects. Academic Press, San Diego, pp 265–276CrossRefGoogle Scholar
  87. Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581CrossRefGoogle Scholar
  88. McClellan K, Altenburger R, Schmitt-Jansen M (2008) Pollution-induced community tolerance as a measure of species interaction in toxicity assessment. J Appl Ecol 45:1514–1522CrossRefGoogle Scholar
  89. McNeil J, Lick W (2004) Erosion rates and bulk properties of sediments from the Kalamazoo River. J Great Lakes Res 30:407–418CrossRefGoogle Scholar
  90. Näslund J, Hedman JE, Agestrand C (2008) Effects of the antibiotic ciprofloxacin on the bacterial community structure and degradation of pyrene in marine sediment. Aquat Toxicol 90:223–227CrossRefGoogle Scholar
  91. Neu TR, Manz B, Volke F, Dynes JJ, Hitchcock AP, Lawrence JR (2010) Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiol Ecol 72:1–21CrossRefGoogle Scholar
  92. Noak M, Wieprecht S (2010) The Quality of the Hyporheic Interstitial: A Challenge for Morphology and Biology. IAHR First European Congress, Edinburgh, ScotlandGoogle Scholar
  93. Nocker A, Burr M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54:276–289CrossRefGoogle Scholar
  94. Oda Y, Nakamura S, Oki I, Kato T, Shinagawa H (1985) Evaluation of the new system (UMU-test) for the detection of environmental mutagens and carcinogens. Mutat Res 147:219–229Google Scholar
  95. OECD 218 (2004) OECD guideline 218: Sediment-water chironomid toxicity using spiked sediment. Organisation for Economic Co-operation and Development, BerlinGoogle Scholar
  96. Oetken M, Stachel B, Pfenninger M, Oehlmann J (2005) Impact of a flood disaster on sediment toxicity in a major river system—the Elbe flood 2002 as a case study. Environ Pollut 134:87–95CrossRefGoogle Scholar
  97. Onbasli D, Aslim B (2009) Effects of some organic pollutants on the exopolysaccharides (EPSs) produced by some Pseudomonas spp. strains. J Hazard Mater 168:64–67CrossRefGoogle Scholar
  98. Paarlberg AJ, Knaapen MAF, de Vries MB, Hulscher S, Wang ZB (2005) Biological influences on morphology and bed composition of an intertidal flat. Estuar Coast Shelf S 64:577–590CrossRefGoogle Scholar
  99. Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48:49–64CrossRefGoogle Scholar
  100. Parchure TM, Mehta AJ (1985) Erosion of soft cohesive sediment deposits. J Hydraul Eng—ASCE 111:1308–1326CrossRefGoogle Scholar
  101. Partheniades E (1965) Erosion and deposition of cohesive soils. J Hydraul Eng Div ASCE 91(HY1):105–138Google Scholar
  102. Passow U (2002) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55:287–333CrossRefGoogle Scholar
  103. Paterson DM, Tolhurst TJ, Kelly JA, Honeywill C, de Deckere E, Huet V, Shayler SA, Black KS, de Brouwer J, Davidson I (2000) Variations in sediment properties, Skeffling mudflat, Humber Estuary, UK. Cont Shelf Res 20:1373–1396CrossRefGoogle Scholar
  104. Paterson D, Aspden R, Visscher P, Consalvey M, Andres M, Decho A, Stolz J, Reid P (2008) Light-dependant biostabilisation of sediments by stromatolite assemblages. PLoS One 3:e3176CrossRefGoogle Scholar
  105. Perelo LW (2010) Review: In situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177:81–89CrossRefGoogle Scholar
  106. Perkins RG, Sun HY, Watson J, Player MA, Gust G, Paterson DM (2004) In-line laser holography and video analysis of eroded floc from engineered and estuarine sediments. Environ Sci Technol 38:4640–4648CrossRefGoogle Scholar
  107. Priester JH, Olson SG, Webb SM, Neu MP, Hersman LE, Holden PA (2006) Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Appl Environ Microbiol 72:1988–1996CrossRefGoogle Scholar
  108. Radajewski S, McDonald IR, Murrell JC (2003) Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms. Curr Opin Biotech 14:296–302CrossRefGoogle Scholar
  109. Raes J, Bork P (2008) Systems microbiology–timeline–molecular eco-systems biology: towards an understanding of community function. Nat Rev Microbiol 6:693–699CrossRefGoogle Scholar
  110. Ravisangar V, Brouckaert BM, Amirtharajah A, Sturm TW (2001) The role of solution chemistry in the stability and detachment of cohesive kaolinite particles. Water Science and Technology: Water Supply 1:25–32Google Scholar
  111. Ricart M, Guasch H, Barcelo D, Brix R, Conceicao MH, Geiszinger A, de Alda MJL, Lopez-Doval JC, Munoz I, Postigo C, Romani AM, Villagrasa M, Sabater S (2010) Primary and complex stressors in polluted Mediterranean rivers: pesticide effects on biological communities. J Hydrol 383:52–61CrossRefGoogle Scholar
  112. Riding R, Amrawik SM (2000) Microbial sediments. Springer, New York, 331 ppGoogle Scholar
  113. Schutte UME, Abdo Z, Bent SJ, Shyu C, Williams CJ, Pierson JD, Forney LJ (2008) Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 80:365–380CrossRefGoogle Scholar
  114. Schwartz R, Gerth J, Neumann-Hensel H, Bley S, Forstner U (2006) Assessment of highly polluted fluvisol in the Spittelwasser floodplain—based on national guideline values and MNA-criteria. J Soils Sediments 6:145–155CrossRefGoogle Scholar
  115. Shields A (1936) Anwendungen der Ähnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitteilungen der preußischen Versuchsanstalt für Wasserbau und Schiffbau, Berlin 26Google Scholar
  116. Shvidchenko AB, Pender G (2000) Flume study of the effect of relative depth on the incipient motion of coarse uniform sediments. Water Resour Res 36:619–628CrossRefGoogle Scholar
  117. Solan M, Raffaelli DG, Paterson DM, White PCL, Pierce GJ (2006) Marine biodiversity and ecosystem function: empirical approaches and future research needs—introduction. Mar Ecol Prog Ser 311:175–178CrossRefGoogle Scholar
  118. Solan M, Batty P, Bulling MT, Godbold JA (2008) How biodiversity affects ecosystem processes: implications for ecological revolutions and benthic ecosystem function. Aquat Biol 2:289–301CrossRefGoogle Scholar
  119. Stal LJ (2010) Microphytobenthos as a biogeomorphological force in intertidal sediment stabilization. Ecol Eng 36:236–245CrossRefGoogle Scholar
  120. Stone M, Krishnappan BG, Emelko MB (2008) The effect of bed age and shear stress on the particle morphology of eroded cohesive river sediment in an annular flume. Water Res 42:4179–4187CrossRefGoogle Scholar
  121. Tuhtan J, Wieprecht S, Schneider M (2010) Automating River Rehabilitation Measure Design Considering Ecological and Economic Constraints, 8. International Symposium on Environmental Hydraulics (ISEH), Seoul, KoreaGoogle Scholar
  122. Turner A, Millward GE (2002) Suspended particles: their role in estuarine biogeochemical cycles. Estuar Coast Shelf 55:857–883CrossRefGoogle Scholar
  123. Underwood GJC, Paterson DM (2003) The importance of extracellular carbohydrate production by marine epipelic diatoms. Adv Bot Res 40:183–240CrossRefGoogle Scholar
  124. van Beelen P (2003) A review on the application of microbial toxicity tests for deriving sediment quality guidelines. Chemosphere 53:795–808CrossRefGoogle Scholar
  125. Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554CrossRefGoogle Scholar
  126. Wadhia K, Dando TR (2009) Environmental toxicity testing using the microbial assay for risk assessment (MARA). Fresen Environ Bull 18:213–218Google Scholar
  127. Walker BH (1992) Biodiversity and ecological redundancy. Conserv Biol 6:18–23CrossRefGoogle Scholar
  128. Westrich B, Haag I, Kern U (2000) Mobilität von schadstoffen in den sedimenten staugeregelter flüsse—dynamik und bilanzierung von schwebstoffen und schwermetallen in einer stauhaltungskette. University Stuttgart, StuttgartGoogle Scholar
  129. WFD (2000) Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policyGoogle Scholar
  130. Widdows J, Brinsley M (2002) Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone. J Sea Res 48:143–156CrossRefGoogle Scholar
  131. Widdows J, Brinsley MD, Salkeld PN, Lucas CH (2000) Influence of biota on spatial and temporal variation in sediment erodability and material flux on a tidal flat (Westerschelde, The Netherlands). Mar Ecol Prog Ser 194:23–37CrossRefGoogle Scholar
  132. Wölz J, Engwall M, Maletz S, Takner HO, van Bavel B, Kammann U, Klempt M, Weber R, Braunbeck T, Hollert H (2008) Changes in toxicity and Ah receptor agonist activity of suspended particulate matter during flood events at the rivers Neckar and Rhine—a mass balance approach using in vitro methods and chemical analysis. Environ Sci Pollut Res 15:536–553CrossRefGoogle Scholar
  133. Wölz J, Cofalla C, Hudjetz S, Roger S, Brinkmann M, Schmidt B, Schäffer A, Kammann U, Lennartz G, Hecker M, Schüttrumpf H, Hollert H (2009) In search for the ecological and toxicological relevance of sediment re-mobilisation and transport during flood events. J Soils Sediments 9:1–5CrossRefGoogle Scholar
  134. Wölz J, Brack W, Moehlenkamp C, Claus E, Braunbeck T, Hollert H (2010) Effect-directed analysis of Ah receptor-mediated activities caused by PAHs in suspended particulate matter sampled in flood events. Sci Total Environ 408:3327–3333CrossRefGoogle Scholar
  135. Wotton RS (2004) The ubiquity and many roles of exopolymers (EPS) in aquatic systems. Sci Mar 68:13–21CrossRefGoogle Scholar
  136. Wu WM, Wang SSY, Jia YF (2000) Nonuniform sediment transport in alluvial rivers. J Hydraul Res 38:427–434CrossRefGoogle Scholar
  137. Wu B, Molinas A, Shu A (2003) Fractional transport of sediment mixtures. Int J Sediment Res 18:232–247Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Sabine Ulrike Gerbersdorf
    • 1
  • Henner Hollert
    • 2
  • Markus Brinkmann
    • 2
  • Silke Wieprecht
    • 1
  • Holger Schüttrumpf
    • 3
  • Werner Manz
    • 4
  1. 1.Department of Hydraulic Engineering and Water Resources Management, Institute of Hydraulic EngineeringUniversity StuttgartStuttgartGermany
  2. 2.Department of Ecosystem Analysis, Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
  3. 3.Institute of Hydraulic Engineering and Water Resources ManagementRWTH Aachen UniversityAachenGermany
  4. 4.Institute for Integrated Natural SciencesUniversity Koblenz–LandauKoblenzGermany

Personalised recommendations