Journal of Soils and Sediments

, Volume 11, Issue 5, pp 860–873 | Cite as

Herbicide degradation and copper complexation by bacterial mixed cultures from a vineyard stormwater basin

  • Paul Bois
  • David Huguenot
  • Marie-Paule Norini
  • Muhammad Farhan Ul Haque
  • Stéphane Vuilleumier
  • Thierry Lebeau
SEDIMENTS, SEC 2 • PHYSICAL AND BIOGEOCHEMICAL PROCESSES • RESEARCH ARTICLE

Abstract

Purpose

The use of stormwater basins as constructed wetlands for the bioremediation of agricultural runoff waters contaminated with pesticides has great potential. The structure and dynamics of the bacterial community in such system, and its function with respect to contaminant removal, remain to be investigated in detail.

Materials and methods

The bacterial component of sediment collected from a vineyard stormwater basin (in Rouffach, France) that pooled incoming runoff water containing pesticide and copper, was investigated by enumeration of cultivable bacteria on sediment extract solid medium and by liquid enrichment cultures from sediment, in the presence of glyphosate, diuron, 3,4-dichloroaniline and copper. Its structure, as a function of sediment location, depth, rhizospheric status and the presence of contaminants, was studied by temporal temperature gradient electrophoresis. Cultures obtained by enrichment were screened by RISA and RFLP and the ability of different cultures for contaminant mitigation was evaluated by the chrome azurol S method (copper complexation) and HPLC (glyphosate, diuron and 3,4-dichloroaniline degradation). The composition of the mixed cultures with the highest potential with regard to degradation of glyphosate, diuron and 3,4-dichloroaniline and copper complexation were evaluated by sequence analysis of cloned PCR-amplified 16S rRNA gene fragments obtained from enrichment cultures.

Results and discussion

The bacterial community structure of sediment showed differences depending on sampling location, sediment depth and sampling date. Spiking with a cocktail of concentrated glyphosate, diuron, 3,4-dichloroaniline and copper altered the bacterial community structure, but rhizospheric samples were less affected. RISA and RFLP analysis differentiated 98 distinct cultures, 28 of which were able to complex copper, and three, 35 and seven were able to degrade glyphosate, diuron and 3,4-dichloroaniline, respectively. Sequencing of cloned 16S rRNA gene fragments amplified from faster-growing rhizospheric mixed culture 106, selected as the most efficient in complexing copper and degrading glyphosate, diuron and 3,4-dichloroaniline, showed that it consisted of Arthrobacter sp., Pseudomonas putida, Delftia acidovorans and Brevundimonas sp. strains.

Conclusions

The investigated stormwater basin contains bacterial populations specifically adapted to the transformation of diuron, 3,4-dichloroaniline (3,4-DCA) and glyphosate, and to copper complexation. The mixed culture 106 complexed high amounts of copper ions and degraded glyphosate and diuron without accumulation of the major diuron metabolite 3,4-DCA. Our results also suggest that plants may help to stabilise bacterial-driven pesticide mitigation in environments subject to variable conditions such as stormwater basins.

Keywords

Bioremediation Copper Diuron Glyphosate Ribosomal 16S rRNA gene Siderophores 

References

  1. Aubertot JN, Barbier JM, Carpentier A, Gril JJ, Guichard L, Lucas P, Savary S, Savini I, Voltz, M (2005) Pesticides, agriculture et environnement. Réduire l’utilisation des pesticides et en limiter les impacts environnementaux. Rapport d’expertise scientifique collective. INRA et CEMAGREF, ParisGoogle Scholar
  2. Banas D, Marin B, Skraber S, Chopin EIB, Zanella A (2010) Copper mobilisation affected by weather conditions in a stormwater detention system receiving runoff waters from vineyard soils (Champagne, France). Environ Pollut 158:476–482CrossRefGoogle Scholar
  3. Batisson I, Pesce S, Besse-Hoggan P, Sancelme M, Bohatier J (2007) Isolation and characterization of diuron-degrading bacteria from lotic surface water. Microb Ecol 54:761–770CrossRefGoogle Scholar
  4. Bazot S, Lebeau T (2008). Simultaneous mineralization of glyphosate and diuron by a consortium of three bacteria as free- and/or immobilized-cells formulations. Appl Microbiol Biotechnol 77:1351–1358Google Scholar
  5. Bazot S, Bois P, Joyeux C, Lebeau T (2007) Mineralization of diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] by co-immobilized Arthrobacter sp. and Delftia acidovorans. Biotechnol Lett 29:749–754CrossRefGoogle Scholar
  6. Bouldin JL, Farris JL, Moore MT, Smith S Jr, Cooper CM (2006) Hydroponic uptake of atrazine and lambda-cyhalotrin in Juncus effusus and Ludwigia peploides. Chemosphere 65:1049–1057CrossRefGoogle Scholar
  7. Bragato C, Brix H, Malagoli M (2006) Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ Pollut 144:967–975CrossRefGoogle Scholar
  8. Braid M, Daniels LM, Kitts CL (2003) Removal of PCR inhibitors from soil DNA by chemical flocculation. J Microbiol Meth 52:389–393CrossRefGoogle Scholar
  9. Braud A, Hoegy F, Jezequel K, Lebeau T, Schalk IJ (2009) New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environ Microbiol 11:1079–1091CrossRefGoogle Scholar
  10. Calheiros CSC, Duque AF, Moura A, Henriques IS, Correia A, Rangel AOSS, Castro PML (2009) Changes in the bacterial community structure in two-stage constructed wetlands with different plants for industrial wastewater treatment. Bioresour Technol 100:3228–3235CrossRefGoogle Scholar
  11. Cardinale M, Brusetti L, Quatrini P, Borin S, Puglia AM, Rizzi A, Zanardini E, Sorlini C, Corselli C, Daffonchio D (2004) Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl Environ Microbiol 70:6147–6156CrossRefGoogle Scholar
  12. Carter A (2000) How pesticides get into water—and proposed reduction measures. Pestic Outlook 11:149–156CrossRefGoogle Scholar
  13. Cullington JE, Walker A (1999) Rapid biodegradation of diuron and other phenylurea herbicides by a soil bacterium. Soil Biol Biochem 31:677–686CrossRefGoogle Scholar
  14. Dejonghe W, Berteloot E, Goris J, Boon N, Crul K, Maertens S, Höfte M, De Vos P, Verstraete W, Top EM (2003) Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading Variovorax strain. Appl Environ Microbiol 69:1532–1541CrossRefGoogle Scholar
  15. Dessai DVG, Nayak GN, Basavaiah N (2009) Grain size, geochemistry, magnetic susceptibility: proxies in identifying sources and factors controlling distribution of metals in a tropical estuary, India. Estuar Coast Shelf Sci 85:307–318CrossRefGoogle Scholar
  16. Dick RE, Quinn JP (1995) Glyphosate-degrading isolates from environmental samples: occurrence and pathways of degradation. Appl Microbiol Biotechnol 43:545–550CrossRefGoogle Scholar
  17. El-Deeb BA, Soltan SM, Ali AM, Ali KA (2000) Detoxification of the herbicide diuron by Pseudomonas sp. Folia Microbiol 45:211–216CrossRefGoogle Scholar
  18. El-Fantroussi S (2000) Enrichment and molecular characterization of a bacterial culture that degrades methoxy-methyl urea herbicides and their aniline derivatives. Appl Environ Microbiol 66:5110–5115CrossRefGoogle Scholar
  19. El-Fantroussi S, Verschuere L, Verstraete W, Top EM (1999) Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16SrRNA gene fingerprints and community-level physiological profiles. Appl Environ Microbiol 65:982–988Google Scholar
  20. Ellis PA, Camper ND (1982) Aerobic degradation of diuron by aquatic microorganisms. J Environ Sci Health B 17:277–289CrossRefGoogle Scholar
  21. Felske A, Akkermans ADL, De Vos WM (1998) Quantification of 16S rRNA in complex bacterial communities by multiple competitive reverse transcription-PCR in temperature gradient gel electrophoresis fingerprints. Appl Environ Microbiol 64:4581–4587Google Scholar
  22. Field JA, Reed RL, Sawyer TE, Griffith SM, Wigington PJ (2003) Diuron occurrence and distribution in soil and surface and ground water associated with grass seed production. J Environ Qual 32:171–179CrossRefGoogle Scholar
  23. Grégoire C, Elsaesser D, Huguenot D, Lange J, Lebeau T, Merli A, Mosé R, Passeport E, Payraudeau S, Schutz T, Schulz R, Tapia-Padilla G, Tournebize J, Trevisan M, Wanko A (2009) Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems. Environ Chem Lett 7:205–231CrossRefGoogle Scholar
  24. Grégoire C, Payraudeau S, Domange N (2010) Use and fate of 17 pesticides applied on a vineyard catchment. Int J Environ Anal Chem 90:406–420CrossRefGoogle Scholar
  25. Hernando MD, Ejerhoon M, Fernández-Alba AR, Chisti Y (2003) Combined toxicity effects of MTBE and pesticides measured with Vibrio fischeri and Daphnia magna bioassays. Water Res 37:4091–4098CrossRefGoogle Scholar
  26. Heuer H, Hartung K, Wieland G, Kramer I, Smalla K (1999) Polynucleotide probes that target a hypervariable region of 16S-RNA genes to identify bacterial isolates corresponding to bands of community fingerprints. Appl Environ Microbiol 65:1045–1049Google Scholar
  27. Huang J, Su Z, Xu Y (2005) The evolution of microbial phosphonate degradative pathways. J Mol Evol 61:682–690CrossRefGoogle Scholar
  28. Huguenot D, Bois P, Jézéquel K, Cornu JY, Lebeau T (2010) Selection of low cost materials for the sorption of copper and herbicides as single or mixed compounds in matrices of increasing complexity. J Hazard Mater 182:18–26CrossRefGoogle Scholar
  29. IFEN (2007) Les pesticides dans les eaux—données 2005. Les dossiers IFEN 9Google Scholar
  30. Kawai S, Uno B, Tomita M (1991) Determination of glyphosate and its major metabolite aminomethylphosphonic acid by high-performance liquid-chromatography after derivatization with para-toluenesulfonyl chloride. J Chromatogr 540:411–415CrossRefGoogle Scholar
  31. Kjelleberg S, Hermansson M (1984) Starvation-induced effects on bacterial surface characteristics. Appl Environ Microbiol 48:497–503Google Scholar
  32. Kotsou M, Mari I, Lasaridi K, Chatzipavlidis I, Balis C, Kyriacou A (2004) The effect of olive oil mill wastewater (OMW) on soil microbial communities and suppressiveness against Rhizoctonia solani. Appl Soil Ecol 26:113–121CrossRefGoogle Scholar
  33. Kunito T, Saeki K, Oyaizu H, Matsumoto S (1999) Influences of copper forms on the toxicity to microorganisms in soils. Ecotoxicol Environ Saf 44:174–181CrossRefGoogle Scholar
  34. Lebeau T, Bagot D, Jezequel K, Fabre B (2002) Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium: effect of Cd, pH and techniques of culture. Sci Total Environ 291:73–83CrossRefGoogle Scholar
  35. Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522CrossRefGoogle Scholar
  36. Le Bissonnais Y, Gascuel-Odoux C (2000) L’érosion hydrique des sols cultivés en milieu tempéré. Sol : interface fragile, (Stengel P & Gelin S, eds.), pp. 222. Coédition INRA et Nathan, ParisGoogle Scholar
  37. Liebens J (2001) Heavy metal contamination of sediments in stormwater management systems: the effect of land use, particle size, and age. Environ Geol 41:341–351CrossRefGoogle Scholar
  38. Marugg JD, van Spanje M, Hoekstra WP, Schippers B, Weisbeek PJ (1985) Isolation and analysis of genes involved in siderophore biosynthesis in plant-growth-stimulating Pseudomonas putida WCS358. J Bacteriol 164:563–570Google Scholar
  39. Matamoros V, Jaume Puigagut J, Joan Garcia J, Bayona JM (2007) Behavior of selected priority organic pollutants in horizontal subsurface flow constructed wetlands: a preliminary screening. Chemosphere 69:1374–1380CrossRefGoogle Scholar
  40. McGrath SP, Shen ZG, Zhao FJ (1997) Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil 188:153–159Google Scholar
  41. McKinlay RG, Kasperek K (1999) Obsevations on decontamination of herbicide-polluted water by marsh plant systems. Water Res 33:505–511CrossRefGoogle Scholar
  42. Mitchell C, Brodie J, White I (2005) Sediments, nutrients and pesticide residues in event flow conditions in streams of the Mackay Whitsunday Region, Australia. Mar Pollut Bull 1:23–36CrossRefGoogle Scholar
  43. Nacamulli C, Bevivino A, Dalmastri C, Tabacchioni S, Chiarini L (1997) Perturbation of maize rhizosphere microflora following seed bacterization with Burkholderia cepacia MCI 7. FEMS Microbiol Ecol 23:183–193CrossRefGoogle Scholar
  44. Obojska A, Lejczak B, Kubrak M (1999) Degradation of phosphonates by streptomycete isolates. Appl Microbiol Biotech 51:872–876.Google Scholar
  45. Peruzzo PJ, Porta AA, Roncoa AE (2008) Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environ Pollut 156:61–66CrossRefGoogle Scholar
  46. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) H Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149CrossRefGoogle Scholar
  47. Ribolzi O, Valles V, Gomez L, Voltz M (2002) Speciation and origin of particulate copper in runoff water from a Mediterranean vineyard catchment. Environ Pollut 117:261–271CrossRefGoogle Scholar
  48. Schröder P, Navarro-Aviñó JHA, Goldhirsh AG, DiGregorio S, Komives T, Langergraber G, Lenz A, Maestri E, Memon AR, Ranalli A, Sebastiani L, Smrcek S, Vanek T, Vuilleumier S, Wissing F (2007) Using phytoremediation technologies to upgrade waste water treatment in Europe. Environ Sci Pollut Res 14:440–447CrossRefGoogle Scholar
  49. Schulz R (2004) Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: a review. J Environ Qual 33:419–448CrossRefGoogle Scholar
  50. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and the determination of siderophores. Anal Biochem 160:47–56CrossRefGoogle Scholar
  51. Sleytr K, Tietz A, Langergraber G, Haberl R, Sessitsch A (2009) Diversity of abundant bacteria in subsurface vertical flow constructed wetlands. Ecol Eng 35:1021–1025CrossRefGoogle Scholar
  52. Stenström J, Svensson K, Johansson M (2001) Reversible transition between active and dormant microbial states in soil. FEMS Microbiol Ecol 36:93–104Google Scholar
  53. Stottmeister U, Wiessner A, Kuschk P, Kappelmeyer U, Kastner M, Bederski O, Muller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117CrossRefGoogle Scholar
  54. Thioulouse J, Chessel D, Doledec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83CrossRefGoogle Scholar
  55. Thompson I, van der Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection: minireview. Environ Microbiol 7:909–915CrossRefGoogle Scholar
  56. Tixier C, Sancelme M, Aït-Aïssa S, Widehem P, Bonnemoy F, Cuer A, Truffaut N, Veschambre H (2002) Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere 46:519–526CrossRefGoogle Scholar
  57. Travkin VM, Golovleva LA (2003) The degradation of 3,4-dichloroaniline by Pseudomonas fluorescens strain 26-K. Microbiology 72:240–243Google Scholar
  58. Tsui MTK, Chu LM (2003) Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52:1189–1197CrossRefGoogle Scholar
  59. Turnbull GA, Cullington JE, Walker A, Morgan JAW (2001a) Identification and characterisation of a diuron-degrading bacterium. Biol Fertil Soils 33:472–476CrossRefGoogle Scholar
  60. Turnbull GA, Ousley M, Walker A, Shaw E, Morgan JAW (2001b) Degradation of substituted phenylurea herbicides by Arthrobacter globiformis strain D47 and characterization of a plasmid-associated hydrolase gene, puhA. Appl Environ Microbiol 67:2270–2275CrossRefGoogle Scholar
  61. Upchurch R, Chiu CY, Everett K, Dyszynski G, Coleman DC, Whitman WB (2008) Differences in the composition and diversity of bacterial communities from agricultural and forest soils. Soil Biol Biochem 40:1294–1305CrossRefGoogle Scholar
  62. USEPA (1996) Microwave assisted acid digestion of sediments, sludges, soils and oils, method 3051A. USEPA, Washington, DCGoogle Scholar
  63. Van Elsas JD, Torsvik V, Hartmann A, Øvreås L, Jansson JK (2007) The bacteria and archaea in soil. Modern soil microbiology, 2nd edn. CRC, United StatesGoogle Scholar
  64. Vartapetian BB, Jackson MB (1997) Plant adaptations to anaerobic stress. Ann Bot 79:3–20CrossRefGoogle Scholar
  65. Vauterin L, Vauterin P (1992) Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur Microbiol 1:37–41Google Scholar
  66. Verstraete W, Wittelbolle L, Heylen K, Vanparys B, de Vos P, van de Wiele T, Boon N (2007) Microbial resource management: the road to go for environmental biotechnology. Eng Life Sci 7:117–126CrossRefGoogle Scholar
  67. Viti C, Quaranta D, De Philippis R, Corti G, Agnelli A, Cuniglio R, Giovannetti L (2008) Characterizing cultivable soil microbial communities from copper fungicide-amended olive orchard and vineyard soils. World J Microbiol Biotechnol 24:309–318CrossRefGoogle Scholar
  68. Vroumsia T, Steiman R, Seigle-Murandi F, Benoit-Guyod JL, Khadrani A (1996) Biodegradation of three substituted phenylurea herbicides (chlortoluron, diuron, and isoproturon) by soft fungi. A comparative study. Chemosphere 33:2045–2056CrossRefGoogle Scholar
  69. Vymazal J, Kröpfelová L, Svehla J, Chrastný V, Stíchová J (2009) Trace elements in Phragmites australis growing in constructed wetlands for treatment of municipal wastewater. Ecol Eng 35:303–309CrossRefGoogle Scholar
  70. Widehem P, Aït-Aïssa S, Tixier C, Sancelme M, Veschambre H, Truffaut N (2002) Isolation, characterization and diuron transformation capacities of a bacterial strain Arthrobacter sp. N2. Chemosphere 46:527–534CrossRefGoogle Scholar
  71. Wikström P, Andersson AC, Forsman M (1999) Biomonitoring complex microbial communities using random amplified polymorphic DNA and principle component analysis. FEMS Microbiol Lett 28:131–139CrossRefGoogle Scholar
  72. You IS, Bartha R (1982) Metabolism of 3,4-dichloroaniline by Pseudomonas putida. J Agr Food Chem 30:274–277CrossRefGoogle Scholar
  73. Zhang G, Niu F, Ma X, Liu W, Dong M, Feng H, An L, Cheng G (2007) Phylogenetic diversity of bacteria isolates from the Qinghai-Tibet Plateau permafrost region. Can J Microbiol 53:1000–1010CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Paul Bois
    • 1
  • David Huguenot
    • 1
  • Marie-Paule Norini
    • 1
  • Muhammad Farhan Ul Haque
    • 2
  • Stéphane Vuilleumier
    • 2
  • Thierry Lebeau
    • 1
  1. 1.Equipe Dépollution Biologique des Sols (EDBS), EA 3991 LVBEUniversity of Haute-AlsaceColmar CedexFrance
  2. 2.Université de StrasbourgStrasbourg CedexFrance

Personalised recommendations