Journal of Soils and Sediments

, Volume 11, Issue 4, pp 690–707 | Cite as

Factors controlling sediment yield at the catchment scale in NW Mediterranean geoecosystems

  • Joris de VenteEmail author
  • Rubia Verduyn
  • Gert Verstraeten
  • Matthias Vanmaercke
  • Jean Poesen



This study aimed to (1) increase understanding of the relation between sediment yield and environmental variables at the catchment scale; (2) test and validate existing and newly developed regression equations for prediction of sediment yield; and (3) identify how better predictions may be obtained.

Materials and methods

A correlation and regression analysis was performed between sediment yield and over 40 environmental variables for 61 Spanish catchments. Variables were selected based on availability and expected relation with diverse soil erosion and sediment transport processes. For comparison, the Area Relief Temperature (ART) sediment delivery model was applied to the same catchments. Sediment yield estimates obtained from reservoir surveys were used for model calibration and validation.

Results and discussion

Catchment area, catchment perimeter, stream length, relief ratio, Modified Fournier Index, the RUSLE’s R factor, and catchments percentage with poor vegetation cover showed highest correlations with sediment yield. Stepwise linear regression revealed that variables representing topography, climate, vegetation, lithology, and soil characteristics are required for the best prediction equation. Although calibration results were relatively good, validation showed that the models were unstable and not suitable for extrapolation to other catchments. Reasons for this unstable model performance include (1) lack of detail and quality of the data sources; (2) large variation in catchment characteristics; (3) insufficient representation of all relevant erosion and sediment transport processes; and (4) the presence of nonlinear relations between sediment yield and environmental variables. The nonlinear ART model performed relatively well but systematically overpredicted sediment yield. A model reflecting human impacts, including dams and conservation measures, is expected to provide better results. This, however, requires significantly more input data.


Although important insight is obtained into the relation between sediment yield and environmental factors, prediction of sediment yield at the catchment scale requires alternative approaches. More detailed information is required on land cover (change), and the effect of soil conservation measures. Validation of regression equations is a necessity, and better predictions are obtained by nonlinear models.


ART model Mediterranean Multiple regression Prediction Sediment yield Soil erosion Spanish reservoirs 



The research described in this paper was conducted in the framework of the EC-DG RTD 6th Framework Research Programme (sub-priority—Research on Desertification—project DESIRE (037046): Desertification Mitigation and Remediation of Land—a global approach for local solutions. We thank Carles Balasch and an anonymous reviewer for their constructive and helpful comments that helped us to improve this paper significantly.


  1. Abrahams AD (1984) Channel networks: a geomorphological perspective. Water Resour Res 20:161–188CrossRefGoogle Scholar
  2. Achite M, Touaibia B (2000) Analyse multivariée de la variable ‘érosion spécifique’: cas du bassin versant de l’Oued Mina (Wilaya de Relizane -Algérie). In: Séminaire International Montpellier 2000 Hydrologie des régions méditerranéennes. Programme Hydrologique International, Documents Techniques en Hydrologie 51, pp 119–127Google Scholar
  3. Ali FK, de Boer DH (2008) Factors controlling specific sediment yield in the upper Indus River basin, northern Pakistan. Hydrol Process 22:3102–3114CrossRefGoogle Scholar
  4. Allen PB (1986) Drainage density versus runoff and sediment yield. In: Fourth Federal Interagency Sedimentation Conference, Las Vegas. USGS, pp. 3–38, 33–44Google Scholar
  5. Arnoldus HMJ (1977) Methodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in Morocco. FAO Soils BulletinGoogle Scholar
  6. Avendaño Salas C, Cobo Rayán R (1997) Metodología para estimar la erosion de cuencas fluviales a partir de la batimetría de embalses. In: Ibáñez JJ, Valero Garcés BL, Machado C (eds) El paisaje mediterráneo a través del espacio y del tiempo. Implicaciones en la desertificación. Logroño. Geoforma Ediciones, pp 239–257Google Scholar
  7. Avendaño Salas C, Cobo Rayán R, Gómez Montaña JL, Sanz Montero E (1995) Procedimiento para evaluar la degradación específica (erosión) de cuencas de embalses a partir de los sedimentos acumulados en los mismos. Aplicación al estudio de embalses Españoles. Ingeniería Civil 99:51–58Google Scholar
  8. Avendaño Salas C, Cobo Rayán R, Sanz Montero E, Gómez Montaña JL (1997a) Capacity situation in Spanish reservoirs. In: Dix-neuvième Congrès des Grands Barrages, Florence. Commission Internationale Des Grands Barrages, pp 849–862Google Scholar
  9. Avendaño Salas C, Sanz Montero E, Gómez Montaña JL (1997b) Sediment yield at Spanish reservoirs and its relationship with the drainage basin area. In: Dix-neuvième Congrès des Grands Barrages, Florence. Commission Internationale De Grands Barrages, pp 863–874Google Scholar
  10. Bazzoffi P, Baldassarre G, Pellegrini S, Bassignana A (1997) Models for prediction of water storage decrease in Italian Reservoirs. In: Shady AM, Kassem A, Delise CE, Bouchard MA (eds) Proceedings of the IX World Water Congress IWRA, 1997. pp 249–252Google Scholar
  11. Cammeraat LH, Imeson AC (1999) The evolution and significance of soil-vegetation patterns following land abandonment and fire in Spain. Catena 37:107–127CrossRefGoogle Scholar
  12. Casermeiro MA, Molina JA, de la Cruz Caravaca MT, Hernando Costa J, Hernando Massanet MI, Moreno PS (2004) Influence of scrubs on runoff and sediment loss in soils of Mediterranean climate. Catena 57:91–107CrossRefGoogle Scholar
  13. CEDEX (1992) Informe sobre la situación de los estudios de aforo de solidos, batimetria y sedimentologia de embalses hasta 1992. Centro de Estudios Hidrográficos del CEDEX, MadridGoogle Scholar
  14. Clark EH (1985) The off-site costs of soil erosion. J Soil Water Conserv 40:19–22Google Scholar
  15. Colombo R, Vogt JV, Soille P, Paracchini ML, de Jager A (2007) Deriving river networks and catchments at the European scale from medium resolution digital elevation data. Catena 70:296–305CrossRefGoogle Scholar
  16. Daniel JRK (1981) Drainage density as an index of climatic geomorphology. J Hydrol 50:147–154CrossRefGoogle Scholar
  17. de Roo APJ (1998) Modelling runoff and sediment transport in catchments using GIS. Hydrol Process 12:905–922CrossRefGoogle Scholar
  18. de Roo APJ, Wesseling CG, Ritsema CJ (1996) LISEM: a single event physically-based hydrologic and soil erosion model for drainage basins: I Theory, input and output. Hydrol Process 10:1107–1117CrossRefGoogle Scholar
  19. de Vente J (2009) Soil erosion and sediment yield in Mediterranean geoecosystems. Scale issues, modelling and understanding. PhD thesis, K.U.Leuven, Leuven, BelgiumGoogle Scholar
  20. de Vente J, Poesen J, Verstraeten G (2005) The application of semi-quantitative methods and reservoir sedimentation rates for the prediction of basin sediment yield in Spain. J Hydrol 305:63–86CrossRefGoogle Scholar
  21. de Vente J, Poesen J, Bazzoffi P, Van Rompaey A, Verstraeten G (2006) Predicting catchment sediment yield in Mediterranean environments: the importance of sediment sources and connectivity in Italian drainage basins. Earth Surf Process Landf 31:1017–1034CrossRefGoogle Scholar
  22. de Vente J, Poesen J, Arabkhedri M, Verstraeten G (2007) The sediment delivery problem revisited. Prog Phys Geog 31:155–178CrossRefGoogle Scholar
  23. de Vente J, Poesen J, Verstraeten G, Van Rompaey A, Govers G (2008) Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain. Global Planet Change 60:393–415CrossRefGoogle Scholar
  24. Delmas M, Cerdan O, Mouchel J-M, Garcin M (2009) A method for developing a large-scale sediment yield index for European river basins. J Soils Sediments 9:613–626CrossRefGoogle Scholar
  25. Demmak A (1984) Recherche d’une relation empirique entre apports solides spécifiques et paramètres physico-climatiques des bassins: application au cas algérien. In: Walling DE, Foster SSD, Wurzel P (eds) Challenges in African hydrology and water resources, Harare. IAHS publication No. 144, pp 403–414Google Scholar
  26. Dendy FE, Bolton GC (1976) Sediment yield-runoff-drainage area relationships in the United States. J Soil Water Conserv 31:264–266Google Scholar
  27. Eastman JR (2003) IDRISI Kilimanjaro guide to GIS and image processing; Manual Version, 14th edn. Clark Labs, WorcesterGoogle Scholar
  28. EEA (2000) CORINE land cover 2000. European Environment Agency
  29. ESB (2004) European Soil Database. European Soil Bureau Network and the European Commission, EUR 19945 EN,
  30. Flanagan DC, Ascough JC II, Nicks AD, Nearing MA, Lafle JM (1995) Overview of the WEPP erosion prediction model. In: Flanagan DC, Nearing MA (eds) USDA-Water Erosion Prediction Project. Hillslope profile and watershed model documentation, vol NSERL Report 10. USDA, Indiana, pp 1.1–1.12Google Scholar
  31. Flaxman EM (1972) Predicting sediment yield in western United States. J Hydraul Div ASCE 98(12):2073–2085Google Scholar
  32. Foster GR, Flanagan DC, Nearing MA, Lane LJ, Risse LM, Finker SC (1995) Hillslope erosion component. In: Flanagan DC, Nearing MA (eds) USDA-water erosion prediction project. Hillslope profile and watershed model documentation, vol NSERL Report 10. USDA, Indiana, pp 11.11–11.12Google Scholar
  33. Fournier F (1960) Climat et érosion: la relation entre l’érosion du sol par l’eau et les précipitations atmosphériques. Presses Universitaires de France, ParisGoogle Scholar
  34. García-Ruiz JM (2010) The effects of land uses on soil erosion in Spain: a review. Catena 81:1–11CrossRefGoogle Scholar
  35. Grauso S, Pagano A, Fattoruso G, De Bonis P, Onori F, Regina P, Tebano C (2008) Relations between climatic–geomorphological parameters and sediment yield in a mediterranean semi-arid area (Sicily, southern Italy). Environ Geol 54:219–234CrossRefGoogle Scholar
  36. Gyssels G, Poesen J, Bochet E, Li Y (2005) Impact of plant roots on the resistance of soils to erosion by water: a review. Prog Phys Geog 29:189–217CrossRefGoogle Scholar
  37. Hadley RF, Lal R, Onstad CA, Walling DE, Yair A (1985) Recent developments in erosion and sediment yield studies. International Hydrological Programme (IHP). UNESCO, ParisGoogle Scholar
  38. Haregeweyn N, Poesen J, Nyssen J, Verstraeten G, de Vente J, Govers G, Deckers S, Moeyersons J (2005) Specific sediment yield in Tigray-Northern Ethiopia: assessment and semi-quantitative modelling. Geomorphology 69:315–331CrossRefGoogle Scholar
  39. Harrison CGA (2000) What factors control mechanical erosion rates? Int J Earth Sci 88:752–763CrossRefGoogle Scholar
  40. Hovius N (1998) Control of sediment supply by large rivers. In: Relative role of Eustasy, climate and tectonism in continental rocks. SEPM Special Publication, pp 3–16Google Scholar
  41. Ichim I (1990) The relationship between sediment delivery ratio and stream order: a Romanian case study. In: Walling DE, Yair A, Berkovicz S (eds) Erosion, transport and deposition processes, Jerusalem, 1990. IAHS publication 189, pp 79–86Google Scholar
  42. Jansson MB (1982) Land erosion by water in different climates. Ph.D thesis, UNGI report No. 57, Uppsala University, SwedenGoogle Scholar
  43. Kirkby MJ, Jones RJA, Irvine B, Gobin A, Govers G, Cerdan O, Van Rompaey AJJ, Le Bissonnais Y, Daroussin J, King D, Montanarella L, Grimm M, Vieillefont V, Puigdefabregas J, Boer M, Kosmas C, Yassoglou N, Tsara M, Mantel S, Van Lynden G (2004) Pan-European soil erosion risk assessment: the PESERA Map, Version 1 October 2003. Explanation of Special Publication. No.73 (S.P.I.04.73). European Soil Bureau Research Report No.16, EUR 21176, Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  44. Langbein WB, Schumm SA (1958) Yield of sediment in relation to mean annual precipitation. Trans Amer Geophys Union 39:1076–1084Google Scholar
  45. Lixian W, Lida S, Xiying H, Boging Z, Qingyu W, Guiyun L (1996) Application of regression analysis to the prediction of average annual yield of silt. In: Lixian W (ed) Combating desertification in China. China Forestry Publishing House, pp 210–221Google Scholar
  46. Ludwig W, Probst J-L (1998) River sediment discharge to the oceans; present-day controls and global budgets. Am J Sci 298:265–295CrossRefGoogle Scholar
  47. Ludwig W, Probst J-L, Kempe S (1996) Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochem Cycles 10:23–41CrossRefGoogle Scholar
  48. Michiels P, Gabriels D, Hartmann R (1992) Using the seasonal and temporal precipitation concentration index for characterizing the monthly rainfall distribution in Spain. Catena 19:43–58CrossRefGoogle Scholar
  49. Molina A, Govers G, Vanacker V, Poesen J, Zeelmaekers E, Cisneros F (2007) Runoff generation in a degraded Andean ecosystem: interaction of vegetation cover and land use. Catena 71:357–370CrossRefGoogle Scholar
  50. Morgan RPC, Quinton JN, Smith RE, Govers G, Poesen J, Auerswald K, Chisci G, Torri D, Styczen ME (1998) The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf Process Land 23:527–544CrossRefGoogle Scholar
  51. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290CrossRefGoogle Scholar
  52. Oliver JE (1980) Monthly precipitation distribution: a comparative index. Profess Geographer 32:300–309CrossRefGoogle Scholar
  53. Owens PN, Batalla RJ, Collins AJ, Gomez B, Hicks DM, Horowitz AJ, Kondolf GM, Marden M, Page MJ, Peacock DH, Petticrew EL, Salomons W, Trustrum NA (2005) Fine-grained sediment in river systems: environmental significance and management issues. River Res Appl 21:693–717CrossRefGoogle Scholar
  54. Poesen J, Hooke JM (1997) Erosion, flooding and channel management in Mediterranean environments of Southern Europe. Prog Phys Geog 21:157–199CrossRefGoogle Scholar
  55. Poesen J, van Wesemael B, Govers G, Martinez-Fernandez J, Desmet P, Vandaele K, Quine T, Degraer G (1997) Patterns of rock fragment cover generated by tillage erosion. Geomorphology 18:183–197CrossRefGoogle Scholar
  56. Probst JL, Amiotte-Suchet P (1992) Fluvial suspended sediment transport and mechanical erosion in the Maghreb (North Africa). Hydrol Sci J 37:621–637CrossRefGoogle Scholar
  57. Rabus B, Eineder M, Roth A, Bamler R (2003) The Shuttle Radar Topography Mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J Photogramm 57:241–262CrossRefGoogle Scholar
  58. Ramos MC, Martinez-Casasnovas JA (2004) Nutrient losses from a vineyard soil in northeastern Spain caused by an extraordinary rainfall event. Catena 55:79–90CrossRefGoogle Scholar
  59. Renard KG, Freimund JR (1994) Using monthly precipitation data to estimate the R-factor in the revised USLE. J Hydrol 157:287–306CrossRefGoogle Scholar
  60. Restrepo JD, Kjerfve B, Hermelin M, Restrepo JC (2006) Factors controlling sediment yield in a major South American drainage basin: the Magdalena River, Colombia. J Hydrol 316:213–232CrossRefGoogle Scholar
  61. Roberts PJT (1973) A method of estimating mean annual sediment yields in ungauged catchments. Technical Note No. 44 Department of Water Affairs South Africa, Division of HydrologyGoogle Scholar
  62. Rojo Serrano L (2003) Description of the land use changes in relation to type of crops, landscapes and physiographic units involved in the Guadalentin basin. Deliverable 3.3a. DESERTLINKS, EVK2-CT-2001-00109
  63. SAS (1999) SAS Online Doc version 8. SAS Institute, Cary, NC, USA.
  64. Schoorl JM, Veldkamp A (2001) Linking land use and landscape process modelling: a case study for the Alora region (south Spain). Agr Ecosyst Environ 85:281–292CrossRefGoogle Scholar
  65. Shao JX, Tu D (1995) The Jackknife and Bootstrap. Springer, New YorkGoogle Scholar
  66. Steegen A, Govers G, Takken I, Nachtergaele J, Poesen J, Merckx R (2001) Factors controlling sediment and phosphorus export from two Belgian agricultural catchments. J Environ Qual 30:1249–1258CrossRefGoogle Scholar
  67. Syvitski JPM, Kettner AJ (2007) On the flux of water and sediment into the Northern Adriatic Sea. Cont Shelf Res 27:296–308CrossRefGoogle Scholar
  68. Syvitski JPM, Milliman JD (2007) Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J Geol 115:1–19CrossRefGoogle Scholar
  69. Syvitski JPM, Peckham SD, Hilberman R, Mulder T (2003) Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sediment Geol 162:5–24CrossRefGoogle Scholar
  70. Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–380CrossRefGoogle Scholar
  71. Tamene L, Park SJ, Dikau R, Vlek PLG (2006) Analysis of factors determining sediment yield variability in the highlands of northern Ethiopia. Geomorphology 76:76–91CrossRefGoogle Scholar
  72. UNEP (1997) World atlas of desertification. United Nations Environment ProgrammeGoogle Scholar
  73. Vanmaercke M, Poesen J, Maetens W, de Vente J, Verstraeten G (2011) Sediment yield as a desertification risk indicator. Science of the Total Environment 409 (9):1715–1725Google Scholar
  74. van Wesemael B, Cammeraat E, Mulligan M, Burke S (2003) The impact of soil properties and topography on drought vulnerability of rainfed cropping systems in southern Spain. Agr Ecosys Environ 94:1–15CrossRefGoogle Scholar
  75. Verstraeten G, Poesen J (1999) The nature of small-scale flooding, muddy floods and retention pond sedimentation in central Belgium. Geomorphology 29:275–292CrossRefGoogle Scholar
  76. Verstraeten G, Poesen J (2001) Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate. Geomorphology 40:123–144CrossRefGoogle Scholar
  77. Verstraeten G, Poesen J, de Vente J, Koninckx X (2003) Sediment yield variability in Spain: a quantitative and semiqualitative analysis using reservoir sedimentation rates. Geomorphology 50:327–348CrossRefGoogle Scholar
  78. Vogt JV, Colombo R, Bertolo F (2003) Deriving drainage networks and catchment boundaries: a new methodology combining digital elevation data and environmental characteristics. Geomorphology 53:281–298CrossRefGoogle Scholar
  79. Walling DE (1983) The sediment delivery problem. J Hydrol 65:209–237CrossRefGoogle Scholar
  80. Walling DE, Kleo AHA (1979) Sediment yields of rivers in areas of low precipitation: a global view. In: IAHS (ed) The hydrology of areas of low precipitation, Canberra, 1979. IAHS publication 128, pp 479–493Google Scholar
  81. WCD (2000) Dams and development. A new framework for decision-making. Earthscan Publications Ltd., LondonGoogle Scholar
  82. Wilson L (1973) Variations in mean annual sediment yield as a function of mean annual precipitation. Am J Sci 273:335–349CrossRefGoogle Scholar
  83. Woodward JC (1995) Patterns of erosion and suspended sediment yield in Mediterranean river basins. In: Foster IDL, Gurnell AM, Webb BW (eds) Sediment and water quality in river catchments. Wiley, Chichester, pp 365–389Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Joris de Vente
    • 1
    • 2
    Email author
  • Rubia Verduyn
    • 3
  • Gert Verstraeten
    • 3
  • Matthias Vanmaercke
    • 3
  • Jean Poesen
    • 3
  1. 1.Estación Experimental de Zonas Áridas, EEZA-CSIC, Department of Desertification and GeoecologyAlmeriaSpain
  2. 2.School of GeosciencesUniversity of AberdeenAberdeenUK
  3. 3.Geography Division Katholieke Universiteit Leuven GEO-INSTITUTEDepartment Earth and Environmental SciencesHeverleeBelgium

Personalised recommendations