Advertisement

Journal of Soils and Sediments

, Volume 10, Issue 8, pp 1611–1622 | Cite as

Bioaccumulation of ivermectin from natural and artificial sediments in the benthic organism Lumbriculus variegatus

  • Tineke SlootwegEmail author
  • Michel Alvinerie
  • Philipp Egeler
  • Daniel Gilberg
  • Jussi V. K. Kukkonen
  • Jörg Oehlmann
  • Carsten Prasse
  • Arto J. Sormunen
  • Markus Liebig
SEDIMENTS, SEC 1 • SEDIMENT QUALITY AND IMPACT ASSESSMENT • RESEARCH ARTICLE

Abstract

Purpose

Although ivermectin is a widely used lipophilic parasiticide, data on its potential bioaccumulation in aquatic invertebrates are scarce. In this study, bioaccumulation patterns of radiolabeled 3H-ivermectin from sediments into tissues of the sediment-dwelling worm Lumbriculus variegatus were investigated and assessed.

Materials and methods

Two independent studies are described. In the first study, bioaccumulation kinetics of ivermectin in L. variegatus were investigated by following uptake, elimination, and biotransformation of the compound in worms exposed in artificial sediment. In the second study, possible effects of sediment characteristics on bioavailability of ivermectin were evaluated by comparing accumulation in worms exposed in three different natural sediments and one artificial sediment (organic carbon content 2% to 21%).

Results and discussion

During 28 days of exposure, ivermectin accumulated in worms exposed in all sediments with calculated bioaccumulation factors ranging from 0.2 to 11.0. Bioaccumulation factors correlated with total increase in biomass of worms during the exposure period and with organic carbon content of the sediments. Calculated biota–sediment accumulation factors ranged from 2.1 to 16.6, indicating that other variables, like quality of organic carbon and feeding behavior of the worms, may have influenced the bioavailability of ivermectin. Biotransformation products of ivermectin were only found in water, but not in sediment and worms.

Conclusions

Results show that ivermectin has potential to bioaccumulate in L. variegatus, which could indicate a risk for biomagnification of the compound in the food chain.

Keywords

Bioaccumulation Bioavailability Ivermectin Lumbriculus variegatus Sediment 

Notes

Acknowledgements

The authors thank Karen Duis for her helpful comments on the manuscript. The studies were performed within the EU projects Keybioeffects (MRTN-CT-2006-035695), MODELKEY (511237-GOCE), and ERAPharm (SSPI-CT-2003-511135) of the 6th Framework Program, and project 214545 by the Academy of Finland.

References

  1. Ankley GT, Benoit DA, Balogh JC, Reynoldson TB, Day KE, Hoke RA (1994) Evaluation of potential confounding factors in sediment toxicity tests with three freshwater benthic invertebrates. Environ Tox Chem 13:627–635CrossRefGoogle Scholar
  2. ASTM (American Society for Testing and Materials) (2000) Standard guide for determination of bioaccumulation of sediment-associated contaminants by benthic invertebrates. E1688-00a. In: ASTM 2004 annual book of standards, vol 11.05. Biological Effects and Environmental Fate; Biotechnology; Pesticides. ASTM International, West Conshohocken PA, Philadelphia, PA, pp 1072–1121Google Scholar
  3. Atkinson HJ, Giles GR, MacLean AJ, Wright JR (1958) Chemical methods of soil analysis. Contrib. No 169 (revised), Chem Div, Sci Serv, Canada Department of Agriculture, Ottawa, ON. In: McKeague JA (ed) Manual of soil sampling and methods of analysis. Soil Research Institute, Agriculture Canada, OttawaGoogle Scholar
  4. Brust K, Licht O, Hultsch V, Jungmann D, Nagel R (2001) Effects of terbutryn on aufwuchs and Lumbriculus variegatus in artificial indoor streams. Environ Toxicol Chem 20:2000–2007Google Scholar
  5. Contardo-Jara V, Wiegand C (2008) Biotransformation and antioxidant enzymes of Lumbriculus variegatus as biomarkers of contaminated sediment exposure. Chemosphere 70:1879–1888CrossRefGoogle Scholar
  6. Contardo-Jara V, Klingelmann E, Wiegand C (2009) Bioaccumulation of glyphosate and its formulation Roundup Ultra in Lumbriculus variegatus and its effects on biotransformation and antioxidant enzymes. Environ Pollut 157:57–63CrossRefGoogle Scholar
  7. Cuypers C, Grotenhuis T, Nierop KGJ, Maneiro Franco E, De Jager A, Rulkens W (2002) Amorphous and condensed organic matter domains: the effect of persulfate oxidation on the composition of soil/sediment organic matter. Chemosphere 48:919–931CrossRefGoogle Scholar
  8. Davies IM, McHenery JG, Rae GH (1997) Environmental risk from dissolved ivermectin to marine organisms. Aquaculture 158:263–275CrossRefGoogle Scholar
  9. Davies IM, Gillibrand PA, McHenery JG, Rae GH (1998) Environmental risk of ivermectin to sediment dwelling organisms. Aquaculture 163:29–46CrossRefGoogle Scholar
  10. De Boer J, Smedes F, Wells D, Allan A (1999) Report on the QUASH interlaboratory study on the determination of total-lipid in fish and shellfish. Round 1 SBT-2 Exercise 1000. The EU Standards, Measurements and Testing Program, European Communities, Bruxelles, Luxembourg, 20 ppGoogle Scholar
  11. Di Toro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1541–1583CrossRefGoogle Scholar
  12. Drewes CD, Fourtner CR (1989) Hindsight and rapid escape in a freshwater oligochaete. Biol Bull 177:363–371CrossRefGoogle Scholar
  13. Duce IR, Scott RH (1985) Actions of dihydroavermectin B1a on insect muscle. Brit J Pharmacol 85:395–401Google Scholar
  14. EC (European Commission) (2003) Technical Guidance Document (TGD) on Risk Assessment in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances, Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the marketGoogle Scholar
  15. EC (European Commission) (2010) Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Technical guidance for deriving environmental quality standards. Draft version 5.0 (Stand: 29/01/2010)Google Scholar
  16. Egeler P, Meller M, Schallnaß HJ, Gilberg D (2005) Validation of a sediment toxicity test with the endobenthic aquatic oligochaete Lumbriculus variegatus by an international ring test. In cooperation with R Nagel and B Karaoglan. Report to the Federal Environmental Agency (Umweltbundesamt Berlin), R&D No: 202 67 429Google Scholar
  17. Egeler P, Gilberg D, Fink G, Duis K (2010) Chronic toxicity of ivermectin to the benthic invertebrates Chironomus riparius and Lumbriculus variegatus. J Soils Sediments 10:368–376CrossRefGoogle Scholar
  18. Ewell WS, Gorsuch JW, Kringle RO, Robillard KA, Spiegel RC (1986) Simultaneous evaluation of the acute effects of chemicals on seven aquatic species. Environ Toxicol Chem 5:831–840CrossRefGoogle Scholar
  19. Fent K, Looser PW (1995) Bioaccumulation and bioavailability of tributyltin chloride: influence of pH and humic acids. Water Res 29:1631–1637CrossRefGoogle Scholar
  20. Halley BA, Jacob TA, Lu AYH (1989) The environmental impact of the use of ivermectin: environmental effects and fate. Chemosphere 18:1543–1563CrossRefGoogle Scholar
  21. Ho NFH, Geary TG, Raub TJ, Barsuhn CL, Thompson DP (1990) Biophysical transport properties of the cuticle of Ascaris suum. Mol Biochem Parasitol 41:153–166CrossRefGoogle Scholar
  22. Krogh KA, Søeborg T, Brodin B, Halling-Sørensen B (2008) Sorption and mobility of ivermectin in different soils. J Environ Qual 37:2202–2211CrossRefGoogle Scholar
  23. Landrum PF (1989) Bioavailability and toxicokinetics of polycyclic aromatic hydrocarbons sorbed to sediments for the amphipod Pontoporeia hoyi. Environ Sci Technol 23:588–595CrossRefGoogle Scholar
  24. Liebig M, Fernandez AA, Blübaum-Gronau E, Boxall A, Brinke M, Carbonell G, Egeler P, Fenner K, Fernandez C, Fink G, Garric J, Halling-Sørensen B, Jensen J, Knacker T, Krogh KA, Küster A, Löffler D, Porcel Cots MA, Pope L, Prasse C, Römbke J, Rönnefahrt I, Schneider MK, Schweitzer N, Tarazona J, Ternes T, Traunspurger W, Wehrhan A, Duis K (2010) Environmental risk assessment of ivermectin—a case study. Integr Environ Assess Manag 6(1):567–587CrossRefGoogle Scholar
  25. Löffler D, Römbke J, Meller M, Ternes TA (2005) Environmental fate of pharmaceuticals in water/sediment systems. Environ Sci Technol 39:5209–5218CrossRefGoogle Scholar
  26. Lyytikäinen M, Pehkonen S, Akkanen J, Leppänen MT, Kukkonen JVK (2007) Bioaccumulation and biotransformation of polycyclic aromatic hydrocarbons during sediment tests with oligochaetes (Lumbriculus variegatus). Environ Toxicol Chem 26:2660–2666CrossRefGoogle Scholar
  27. Mäenpää KA, Kukkonen JVK (2006) Bioaccumulation and toxicity of 4-nonylphenol (4-NP) and 4-(2-dodecyl)-benzene sulfonate (LAS) in Lumbriculus variegatus (Oligochaeta) and Chironomus riparius (Insecta). Aquat Toxicol 77:329–338CrossRefGoogle Scholar
  28. Mäenpää KA, Sormunen AJ, Kukkonen JVK (2003) Bioaccumulation and toxicity of sediment associated herbicides (ioxynil, pendimethalin, and bentazone) in Lumbriculus variegatus (Oligochaeta) and Chironomus riparius (Insecta). Ecotox Environ Safe 56:398–410CrossRefGoogle Scholar
  29. Mäenpää KA, Sorsa K, Lyytikäinen M, Leppänen MT, Kukkonen JVK (2008) Bioaccumulation, sublethal toxicity, and biotransformation of sediment-associated pentachlorophenol in Lumbriculus variegatus (Oligochaeta). Ecotox Environ Safe 69:121–129CrossRefGoogle Scholar
  30. Mougin C, Kollmann A, Dubroca J, Ducrot PH, Alvinerie M, Galtier P (2003) Fate of the veterinary medicine ivermectin in soil. Environ Chem Lett 1:131–134CrossRefGoogle Scholar
  31. Mount DR, Dawson TD, Burkhard LP (1999) Implications of gut purging for tissue residues determined in bioaccumulation testing of sediment with Lumbriculus variegatus. Environ Toxicol Chem 18:1244–1249Google Scholar
  32. OECD (Organisation for Economic Cooperation and Development) (1992) Guideline for testing of chemicals. Fish, acute toxicity test, No. 203, pp 1–9Google Scholar
  33. OECD (Organisation for Economic Cooperation and Development) (2004) Guideline for testing of chemicals. Sediment–water chironomid toxicity test using spiked sediment, No. 218, pp 1–21Google Scholar
  34. OECD (Organisation for Economic Cooperation and Development) (2007) Guideline for testing of chemicals. Sediment–water Lumbriculus toxicity test using spiked sediment, No. 225, pp 1–31Google Scholar
  35. OECD (Organisation for Economic Cooperation and Development) (2008) Guideline for testing of chemicals. Bioaccumulation in sediment-dwelling benthic oligochaetes, No. 315, pp 1–33Google Scholar
  36. Oppel J, Broll G, Löffler D, Meller M, Römbke J, Ternes T (2004) Leaching behaviour of pharmaceuticals in soil-testing-systems: a part of an environmental risk assessment for groundwater protection. Sci Total Environ 328:265–273CrossRefGoogle Scholar
  37. Opperhuizen A, Van der Velde EW, Gobas FAPC, Liem DAK, Van der Steen JMD (1985) Relationship between bioconcentration in fish and steric factors of hydrophobic chemicals. Chemosphere 14:1871–1896CrossRefGoogle Scholar
  38. Parrish CC (1999) Determination of total lipid, lipid classes, and fatty acids in aquatic samples. In: Arts MT, Weinmann BC (eds) Lipids in freshwater ecosystems. Springer-Verlag, New York, pp 4–20Google Scholar
  39. Prasse C, Löffler D, Ternes T (2009) Environmental fate of the anthelmintic ivermectin in an aerobic sediment/water system. Chemosphere 77:1321–1325CrossRefGoogle Scholar
  40. Ristola T, Pellinen J, Ruokolainen M, Kostamo A, Kukkonen JVK (1999) Effect of sediment type, feeding level, and larval density on growth and development of a midge (Chironomus riparius). Environ Toxicol Chem 18:756–764Google Scholar
  41. Sanderson H, Laird B, Pope L, Brain R, Wilson C, Johnson D, Bryning G, Peregrine AS, Boxall A, Solomon KR (2007) Assessment of the environmental fate of ivermectin in aquatic mesocosms. Aquat Toxicol 85:229–240CrossRefGoogle Scholar
  42. Suedel BC, Rodger GK (1993) Development of formulated reference sediments for freshwater and estuarine sediment testing. Environ Toxicol Chem 13:1163–1175Google Scholar
  43. US Environmental Protection Agency (US EPA) (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. EPA 600/R-99/064, pp 63–71Google Scholar
  44. US Food and Drug Administration (US FDA) (1990) IVOMEC1 (ivermectin) pour-on for cattle. Environmental assessment. NADA 140-841. Available from: www.fda.gov/downloads/AnimalVeterinary/Development/ApprovalProcess/EnvironmentalAssessments/UCM072241.pdf
  45. Van den Heuvel WJA, Forbis AD, Halley BA, Ku CC, Jacob TA, Wislocki PG (1996) Bioconcentration and depuration of avermectin B1a in the bluegill sunfish. Environ Toxicol Chem 15:2263–2266Google Scholar
  46. Verrengia Guerrero NR, Taylor MG, Davies NA, Lawrence MAM, Edwards PA, Simkiss K, Wider EA (2002) Evidence of differences in the biotransformation of organic contaminants in three species of freshwater invertebrates. Environ Pollut 117:523–530CrossRefGoogle Scholar
  47. You J, Brennan A, Lydy MJ (2009) Bioavailability and biotransformation of sediment-associated pyrethroid insecticides in Lumbriculus variegatus. Chemosphere 75:1477–1482CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Tineke Slootweg
    • 1
    Email author
  • Michel Alvinerie
    • 2
  • Philipp Egeler
    • 1
  • Daniel Gilberg
    • 1
  • Jussi V. K. Kukkonen
    • 3
  • Jörg Oehlmann
    • 4
  • Carsten Prasse
    • 5
  • Arto J. Sormunen
    • 3
  • Markus Liebig
    • 1
  1. 1.ECT Oekotoxikologie GmbHFlörsheim/MainGermany
  2. 2.Laboratoire de Pharmacologie-ToxicologieInstitut National de la Recherche AgronomiqueToulouseFrance
  3. 3.Department of BiologyUniversity of Eastern FinlandJoensuuFinland
  4. 4.Department Aquatic EcotoxicologyGoethe University Frankfurt am MainFrankfurtGermany
  5. 5.Federal Institute of Hydrology (BfG)KoblenzGermany

Personalised recommendations