Journal of Soils and Sediments

, Volume 10, Issue 8, pp 1572–1584

Are cadmium, lead and mercury concentrations in mosses across Europe primarily determined by atmospheric deposition of these metals?

  • Winfried Schröder
  • Marcel Holy
  • Roland Pesch
  • Harry Harmens
  • Ilia Ilyin
  • Eiliv Steinnes
  • Renate Alber
  • Yuliya Aleksiayenak
  • Oleg Blum
  • Mahmut Coşkun
  • Maria Dam
  • Ludwig De Temmerman
  • Marina Frolova
  • Marina Frontasyeva
  • Laura Gonzalez Miqueo
  • Krystyna Grodzińska
  • Zvonka Jeran
  • Szymon Korzekwa
  • Miodrag Krmar
  • Eero Kubin
  • Kestutis Kvietkus
  • Sébastien Leblond
  • Siiri Liiv
  • Sigurður Magnússon
  • Blanka Maňkovská
  • Juha Piispanen
  • Åke Rühling
  • Jesus Santamaria
  • Zdravko Spiric
  • Ivan Suchara
  • Lotti Thöni
  • Viktor Urumov
  • Lilyana Yurukova
  • Harald G. Zechmeister
SOILS, SEC 5 • SOIL AND LANDSCAPE ECOLOGY • RESEARCH ARTICLE

Abstract

Purpose

This study aimed at investigating correlations between heavy metal concentrations in mosses and modelled deposition values as well as other site-specific and regional characteristics to determine which factors primarily affect cadmium, lead and mercury concentrations in mosses. The resulting relationships could potentially be used to enhance the spatial resolution of heavy metal deposition maps across Europe.

Materials and methods

Modelled heavy metal deposition data and data on the concentration of heavy metals in naturally growing mosses were integrated into a geographic information system and analysed by means of bivariate rank correlation analysis and multivariate decision trees. Modelled deposition data were validated annually with deposition measurements at up to 63 EMEP measurement stations within the European Monitoring and Evaluation Programme (EMEP), and mosses were collected at up to 7,000 sites at 5-year intervals between 1990 and 2005.

Results and discussion

Moderate to high correlations were found between cadmium and lead concentrations in mosses and modelled atmospheric deposition of these metals: Spearman rank correlation coefficients were between 0.62 and 0.67, and 0.67 and 0.73 for cadmium and lead, respectively (p < 0.001). Multivariate decision tree analyses showed that cadmium and lead concentrations in mosses were primarily determined by the atmospheric deposition of these metals, followed by emissions of the metals. Low to very low correlations were observed between mercury concentrations in mosses and modelled atmospheric deposition of mercury. According to the multivariate analyses, spatial variations of the mercury concentration in mosses was primarily associated with the sampled moss species and not with the modelled deposition, but regional differences in the atmospheric chemistry of mercury and corresponding interactions with the moss may also be involved.

Conclusions

At least for cadmium and lead, concentrations in mosses are a valuable tool in determining and mapping the spatial variation in atmospheric deposition across Europe at a high spatial resolution. For mercury, more studies are needed to elucidate interactions of different chemical species with the moss.

Keywords

Biomonitoring Cadmium Correlation analysis Deposition Lead Mercury Moss 

References

  1. Aas W (2006) Data quality 2004, quality assurance and field comparisons. EMEP/CCC report 4/2006Google Scholar
  2. Aas W, Breivik K (2008) Heavy metals and POP measurements, 2006. EMEP/CCC-Report 4/2008Google Scholar
  3. Aleksander-Kwaterczak U, Helios-Rybicka E (2009) Contaminated sediments as a potential source of Zn, Pb and Cd for river system at the historical metalliferous ore mining and smelting industry area in South Poland. J Soils Sediments 9:13–22CrossRefGoogle Scholar
  4. Bealey WJ, Long S, Spurgeon DJ, Leith I, Cape JN (2008) Review and implementation study of biomonitoring for assessment of air quality outcomes. Bristol, Environment Agency, 170 pp. (Science Report SC030175/SR2)Google Scholar
  5. Berg T, Steinnes E (1997) Use of mosses (Hylocomium splendens and Pleurozium schreberi) as biomonitors of heavy metal deposition: from relative to absolute values. Environ Pollut 98:61–71CrossRefGoogle Scholar
  6. Berg T, Hjellbrekke A, Rühling Å, Steinnes E, Kubin E, Larsen MM, Piispanen J (2003) Absolute deposition maps of heavy metals for the Nordic countries based on moss surveys. Report TemaNord 2003:505. Nordic Council of Ministers, Copenhagen, p 35Google Scholar
  7. Berg T, Aspmo K, Steinnes E (2008) Transport of Hg from atmospheric mercury depletion events to the mainland of Norway and its possible influence on Hg deposition. Geophys Res Letters 35:L09802CrossRefGoogle Scholar
  8. Breiman L, Friedmann JA, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth, BelmontGoogle Scholar
  9. Diehl MS, Beard K (2009) Spatial analysis of atmospheric deposition and terrestrial accumulation of mercury within Acadia National Park. In: Northeastern section—44th annual meeting (22–24 March 2009), session no. 48: GIS applications in geoscience teaching, research and map production. Spatial Information Sciences Engineering, University of Maine, Orono (http://gsa.confex.com/gsa/2009NE/finalprogram/abstract_155805.htm)
  10. Ellenberg H, Arndt U, Bretthauer R, Ruthsatz B, Steubing L (1991) Biological monitoring. Signals from the environment. Vieweg, BraunschweigGoogle Scholar
  11. Fergusson JE (1991) The heavy elements: chemistry, environmental impact and health effects. Pergamon, OxfordGoogle Scholar
  12. Fränzle O, Schimming CG (2008) Element fluxes in atmosphere, vegetation and soil. In: Fränzle O, Kappen L, Blume HP, Dierssen K (eds) Ecosystem organization of a complex landscape. Long-term research in the Bornhöved Lake District, Germany. Springer, BerlinGoogle Scholar
  13. Fränzle O, Straškraba M, Jørgensen SE (1995) Ecology and ecotoxicology. Ullmann´s encyclopedia of industrial chemistry, vol B7. VCH, Weinheim, pp 19–154Google Scholar
  14. Gauger T, Haenel HD, Rösemann C, Dämmgen U, Bleeker A, Erisman JW, Vermeulen AT, Schaap M, Timmermanns RM A, Builtjes PJH, Duyzer JH (2008) National implementation of the UNECE Convention on Long-range Transboundary Air Pollution (Effects). Part 1: Deposition loads: Methods, modelling and mapping results, trends. BMU/UBA 204 63 252. UBA-Texte 38/08. ISSN 1862-4804Google Scholar
  15. Gusev A, Iliyn I, Rozovskaya O, Shatalov V, Sokovych V, Travnikov O (2009) Modelling of heavy metals and persistent organic pollutants: new developments. EMEP/MSC-East Technical Report 1/2009. http://www.msceast.org
  16. Hagl S (2008) Schnelleinstieg Statistik—Daten erheben, analysieren, präsentieren. Haufe, FreiburgGoogle Scholar
  17. Harmens H, Mills G, Hayes F, Williams P, De Temmerman L, Pesch R, Schröder W, and other participants of ICP Vegetation (2005) Air pollution and vegetation. ICP Vegetation Annual Report 2004/2005. UNECE ICP Vegetation Coordination Centre, Centre for Ecology and Hydrology, Bangor, UK. Available at http://icpvegetation.ceh.ac.uk. Accessed 18 May 2009
  18. Harmens H, Norris D, Pesch R, Schröder W, and other participants of the moss survey (2008) Spatial and temporal trends in heavy metal accumulation in mosses in Europe (1990-2005). Programme Coordination Centre for the ICP Vegetation, Centre for Ecology and Hydrology, Bangor, UK. Available at http://icpvegetation.ceh.ac.uk. Accessed 18 May 2009
  19. Harmens H, Mills G, Hayes F, Jones L, Norris D, Cooper D, and the participants of ICP Vegetation (2009) Air pollution and vegetation. ICP Vegetation annual report 2008/2009. ISBN: 978-0-9557672-9-6Google Scholar
  20. Hengla T, Heuvelink GBM, Rossiter DG (2007) About regression-kriging: from equations to case studies. Comput Geosci 33(10):1301–1315CrossRefGoogle Scholar
  21. Herpin U, Siewers U, Markert B, Rosolen V, Breulmann G, Bernoux M (2004) Second German heavy-metal survey by means of mosses, and comparison of the first and second approach in Germany and other European countries. Environ Sci Pollut Res 11:57–66CrossRefGoogle Scholar
  22. Hettelingh JP, Posch M, Slootweg J (2008) Critical load, dynamic modelling and impact assessment in Europe: CCE Status Report 2008, Coordination Centre for Effects, Netherlands Environmental Assessment Agency. Available at www.pbl.nl/cce. Accessed 18 May 2009
  23. Hornsmann I, Pesch R, Schmidt G, Schröder W (2008) Calculation of an Ecological Land Classification of Europe (ELCE) and its application for optimising environmental monitoring networks. In: Car A, Griesebner G, Strobl J (eds) Geospatial Crossroads @ GI_Forum '08: Proceedings of the Geoinformatics Forum Salzburg. Wichmann, Heidelberg, pp 140–151Google Scholar
  24. ICP Vegetation (2005) Heavy metals in European mosses: 2005/2006 survey. Monitoring manual. ICP Vegetation Coordination Centre, Centre for Ecology and Hydrology, BangorGoogle Scholar
  25. Ilyin I, Travnikov O (2005) Modelling of heavy metal airborne pollution in Europe: evaluation of the model performance. EMEP/MSC-E Technical Report 8/2005. Meteorological Synthesizing Centre-East, Moscow, Russian Federation. http://www.msceast.org
  26. Ilyin I, Rozovskaya O, Travnikov O, Aas W, Hettelingh JP, Reinds GJ (2008) Heavy Metals: Transboundary Pollution of the Environment. EMEP Status Report 2/2008. Norwegian Institute for Air Research, Kjeller, Meteorological Synthesizing Centre-East, Moscow, Norwegian Meteorological Institute, Oslo, Coordination Centre for Effects, BilthovenGoogle Scholar
  27. Iverfeldt Å (1991) Occurrence and turnover of atmospheric mercury over the Nordic countries. Water Air Soil Pollut 56:251–265CrossRefGoogle Scholar
  28. Keil M, Kiefl R, Strunz G (2005) CORINE land cover 2000 - Germany. Final Report, German Aerospace Center, German Remote Sensing Data Center, OberpfaffenhofenGoogle Scholar
  29. Lindberg SE, Turner RR (1988) Factors influencing atmospheric deposition, stream export, and landscape accumulation of trace metals in forested watersheds. Water Air Soil Pollut 39:123–156CrossRefGoogle Scholar
  30. Litz HP (2000) Multivariate statistische Methoden. Oldenbourg Wissenschaftsverlag, MünchenGoogle Scholar
  31. Markert B, Wünschmann S, Fränzle S, Wappelhorst O, Weckert V, Breulmann G, Djingova R, Herpin U, Lieth H, Schröder W, Siewers U, Steinnes E, Wolterbeek B, Zechmeister H (2008) On the road from biomonitoring to human health aspects—monitoring atmospheric heavy metal deposition by epiphytic/epigenetic plants: present status and future needs. Int J Environ Poll 32:486–498CrossRefGoogle Scholar
  32. Morvan X, Saby NP, Arrouays D, Le Bas C, Jones RJ, Verheijen FG, Bellamy PH, Stephens M, Kibblewhite MG (2008) Soil monitoring in Europe: a review of existing systems and requirements for harmonisation. Sci Total Environ 391:1–12CrossRefGoogle Scholar
  33. Mulder C, Breure AM (2006) Impact of heavy metal pollution on plants and leaf-miners. Environ Chem Lett 4:83–86CrossRefGoogle Scholar
  34. Norr C, Riepert F (2007) Bioaccumulation studies with Eisenia fetida using an established degradation test system. J Soils Sediments 7:393–397CrossRefGoogle Scholar
  35. Odeh IOA, McBratney AB, Chittleborough DJ (1995) Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma 67(3–4):215–226CrossRefGoogle Scholar
  36. Osborn D, Weeks JM, Hankard P, Dale L (2000) Potential uses of biomonitoring in pollution control—an introductory guide. Environment Agency Technical Report, p 319Google Scholar
  37. Pacyna JM, Pacyna EG, Aas W (2009) Changes of emissions and atmospheric deposition of mercury, lead, and cadmium in Europe. Atmos Environ 43:117–127CrossRefGoogle Scholar
  38. Pakeman R, Osborn D, Hankard P (2000) Plants as biomonitors of atmospheric pollution: a review of their potential use in integrated pollution control. Environment Agency Technical Report, p 318Google Scholar
  39. Pesch R, Schröder W (2009) Long-term monitoring of the metal accumulation in forests measured by use of the moss technique. Europ J Forest Res. doi:10.1007/s10342-009-0298-y Google Scholar
  40. Pesch R, Schröder W, Mohr K, Matter Y, Kleppin L, Holy M, Goeritz A, Genßler L (2007) Moos-Monitoring 2005/2006: Schwermetalle IV und Gesamtstickstoff. R&D Project 205 64 200, Final Report, on behalf of the Federal Environment Agency, DessauGoogle Scholar
  41. Pesch R, Schmidt G, Schröder W, Conrad A, Kolossa-Gehring M, Feigenspahn S, Utermann J (2009) Das Potenzial raumbezogener Daten im Human-Biomonitoring am Beispiel des Kinder-Umwelt-Surveys. In: Strobl J, Blaschke T, Griesebner G (eds) Angewandte Geoinformatik 2009. Wichmann, Heidelberg, pp 248–257Google Scholar
  42. Rühling A, Tyler G (1968) An ecological approach to the lead problem. Botaniska Notiser 121:321–343Google Scholar
  43. Rühling A, Tyler G (1969) Ecology of heavy metals—a regional and historical study. Botaniska Notiser 121:248–259Google Scholar
  44. Rühling A, Tyler G (1970) Sorption and retention of heavy metals in the woodland moss Hylocomium splendens (Hedw.). Br Et Sch Oikos 21:248–342CrossRefGoogle Scholar
  45. Schöpp W, Amann M, Cofala J, Heyes C, Klimont Z (1999) Integrated assessment of European air pollution emission control strategies. Environ Modell Softw 14:1–9Google Scholar
  46. Schroeder WH, Munthe J (1998) Atmospheric mercury—an overview. Atmos Environ 32(5):809–822CrossRefGoogle Scholar
  47. Schroeder WH, Anlauf KG, Barrie LA, Lu JY, Steffen A, Schneeberger DR, Berg T (1998) Arctic springtime depletion of mercury. Nature 394:331–332CrossRefGoogle Scholar
  48. Schröder W, Pesch R, Schmidt G (2004) Soil monitoring in Germany. Spatial representativity and methodical comparability. J Soils Sediments 4:49–58CrossRefGoogle Scholar
  49. Schröder W, Pesch R, Englert C, Harmens H, Suchara I, Zechmeister HG, Thöni L, Maňkovská B, Jeran Z, Grodzinska K, Alber R (2008) Metal accumulation in mosses across national boundaries: uncovering and ranking causes of spatial variation. Environ Pollut 151:377–388CrossRefGoogle Scholar
  50. Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics. From air pollution to climate change, 2nd edn. Wiley, HobokenGoogle Scholar
  51. Simpson D, Fagerli H, Hellsten S, Knulst JC, Westling O (2006) Comparison of modelled and monitored deposition fluxes of sulphur and nitrogen to ICP-forest sites in Europe. Biogeosciences 3:337–355CrossRefGoogle Scholar
  52. Slootweg J, Hettelingh JP, Posch M, Dutchak S, Ilyin I (2005) Critical loads of cadmium, lead and mercury in Europe. Coordination Center for Effects and EMEP/MSC-East. Report 259101015/2005, Bilthoven, ISBN 90-6960-119-2Google Scholar
  53. Spranger T, Hettelingh JP, Slootweg J, Posch M (2008) Modelling and mapping long-term risks due to reactive nitrogen effects. An overview of LRTAP convention activities. Environ Pollut 154:482–487CrossRefGoogle Scholar
  54. Steinnes E, Andersson EM (1991) Atmospheric deposition of mercury in Norway: temporal and spatial trends. Water Air Soil Pollut 56:391–404CrossRefGoogle Scholar
  55. Steinnes E, Rühling Å, Lippo H, Mäkinen A (1997) Reference material for large-scale metal deposition surveys. Accredit Qual Assur 2:243–249CrossRefGoogle Scholar
  56. Steinnes E, Berg T, Sjøbakk TE (2003) Temporal and spatial trends in Hg deposition monitored by moss analysis. Sci Total Environ 304:215–219CrossRefGoogle Scholar
  57. Task Force on Health (2007) Health risks of heavy metals from long-range transboundary air pollution. World Health Organization, BonnGoogle Scholar
  58. VROM (2007) Heavy metal emissions, depositions, critical loads and exceedances in Europe. In: Hettelingh JP, Sliggers J (eds) Dutch Ministry of Housing, Spatial Planning and the Environment, Directorate for Climate Change and IndustryGoogle Scholar
  59. Zechmeister HG, Grodzinska K, Szarek-Lukaszewska G (2003) Bryophytes. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators & biomonitors—principles, concepts and applications. Elsevier, AmsterdamGoogle Scholar
  60. Zheng YM, Chen TB, He JZ (2008) Multivariate geostatistical analysis of heavy metal in topsoils from Beijing, China. J Soils Sediments 8:51–58CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Winfried Schröder
    • 1
  • Marcel Holy
    • 1
  • Roland Pesch
    • 1
  • Harry Harmens
    • 2
  • Ilia Ilyin
    • 3
  • Eiliv Steinnes
    • 4
  • Renate Alber
    • 5
  • Yuliya Aleksiayenak
    • 6
  • Oleg Blum
    • 7
  • Mahmut Coşkun
    • 8
  • Maria Dam
    • 9
  • Ludwig De Temmerman
    • 10
  • Marina Frolova
    • 11
  • Marina Frontasyeva
    • 12
  • Laura Gonzalez Miqueo
    • 13
  • Krystyna Grodzińska
    • 14
  • Zvonka Jeran
    • 15
  • Szymon Korzekwa
    • 16
  • Miodrag Krmar
    • 17
  • Eero Kubin
    • 18
  • Kestutis Kvietkus
    • 19
  • Sébastien Leblond
    • 20
  • Siiri Liiv
    • 21
  • Sigurður Magnússon
    • 22
  • Blanka Maňkovská
    • 23
  • Juha Piispanen
    • 18
  • Åke Rühling
    • 24
  • Jesus Santamaria
    • 13
  • Zdravko Spiric
    • 25
  • Ivan Suchara
    • 26
  • Lotti Thöni
    • 27
  • Viktor Urumov
    • 28
  • Lilyana Yurukova
    • 29
  • Harald G. Zechmeister
    • 30
  1. 1.Department of Landscape EcologyUniversity of VechtaVechtaGermany
  2. 2.Centre for Ecology and Hydrology BangorBangorUK
  3. 3.Meteorological Synthesising Centre East of EMEPMoscowRussia
  4. 4.Department of ChemistryNorwegian University of Science and TechnologyTrondheimNorway
  5. 5.Environmental Agency of BolzanoLaivesItaly
  6. 6.International Sakharov Environmental UniversityMinskBelarus
  7. 7.National Botanical GardenAcademy of Science of UkraineKievUkraine
  8. 8.Canakkale Onsekiz Mart UniversityÇanakkaleTurkey
  9. 9.Food, Veterinary and Environmental AgencyTórshavnDenmark
  10. 10.Veterinary and Agrochemical Research CentreTervurenBelgium
  11. 11.Latvian EnvironmentGeology and Meteorology AgencyRigaLatvia
  12. 12.Joint Institute for Nuclear ResearchDubnaRussia
  13. 13.University of NavarraPamplonaSpain
  14. 14.Institute of BotanyPolish Academy of SciencesKrakowPoland
  15. 15.Department of Environmental SciencesJožef Stefan InstituteLjubljanaSlovenia
  16. 16.University of OpoleOpolePoland
  17. 17.Faculty of ScienceUniversity of Novi SadNovi SadSerbia
  18. 18.Finnish Forest Research InstituteMuhosFinland
  19. 19.Institute of PhysicsVilniusLithuania
  20. 20.Muséum National d’Histoire NaturelleParisFrance
  21. 21.Tallinn Botanic GardenTallinnEstonia
  22. 22.Icelandic Institute of Natural HistoryReykjavíkIceland
  23. 23.Institute of Landscape EcologySlovak Academy of ScienceBratislavaSlovakia
  24. 24.OskarshamnSweden
  25. 25.Oikon Ltd.Institute for Applied EcologyZagrebCroatia
  26. 26.Silva Tarouca Research Institute for Landscape and Ornamental GardeningPrůhoniceCzech Republic
  27. 27.FUB-Research Group for Environmental MonitoringRapperswilSwitzerland
  28. 28.Saints Cyril and Methodius UniversitySkopjeFYR Macedonia
  29. 29.Bulgarian Academy of SciencesInstitute of BotanySofiaBulgaria
  30. 30.University of ViennaViennaAustria

Personalised recommendations