Advertisement

Journal of Soils and Sediments

, Volume 9, Issue 6, pp 613–626 | Cite as

A method for developing a large-scale sediment yield index for European river basins

  • Magalie DelmasEmail author
  • Olivier Cerdan
  • Jean-Marie Mouchel
  • Manuel Garcin
SEDIMENTS, SEC 3 • SEDIMENT MANAGEMENT AT THE RIVER BASIN SCALE • RESEARCH ARTICLE

Abstract

Background, aim, and scope

Sediment fluxes within continental areas play a major role in biogeochemical cycles and are often the cause of soil surface degradation as well as water and ecosystem pollution. In a situation where a high proportion of the land surface is experiencing significant global land use and climate changes, it appears important to establish sediment budgets considering the major processes forcing sediment redistribution within drainage areas. In this context, the aim of this study is to test a methodology to estimate a sediment yield index at a large spatial resolution for European river basins.

Data and methods

Four indicators representing processes respectively considered as sources (mass movement and hillslope erosion), sinks (deposits), and transfers of sediments (drainage density) are defined using distributed data. Using these indicators we propose a basic conceptual approach to test the possibility of explaining sediment yield observed at the outlet of 29 selected European river basins. We propose an index which adds the two sources and transfers, and subsequently subtracts the sink term. This index is then compared to observed sediment yield data.

Results

With this approach, variability between river basins is observed and the evolution of each indicator analyzed. A linear regression shows a correlation coefficient of 0.83 linking observed specific sediment yield (SSY) with the SSY index.

Discussion

To improve this approach at this large river basin scale, basin classification is further refined using the relation between the observed SSY and the index obtained from the four indicators. It allows a refinement of the results.

Conclusions

This study presents a conceptual approach offering the advantages of using spatially distributed data combined with major sediment redistribution processes to estimate the sediment yield observed at the outlet of river basins.

Recommendations and perspectives

Inclusion of better information on spatial variability should refine the approach. In this respect, basin classification and partition can be useful when applying the model to homogeneous areas. Moreover, to assess the relative effect of each sediment redistribution process, indicators could be weighted for each basin typology.

Keywords

Conceptual approach River basins Sediment redistribution processes Sediment yield 

Notes

Acknowledgements

This study is financed through the Regolithe and RiskMVT research projects of BRGM. We would like to particularly thank P. Thierry and L. Closset for their help concerning the mass movement indicator definition, and for sharing their knowledge in this domain. We are also especially grateful to H. Bourennane for its comments and advices for the result presentation. Finally, the authors would like to thank the anonymous reviewers and the submission editor for their relevant comments.

References

  1. Apitz S, White S (2003) A conceptual framework for river-basin-scale sediment management. J Soils Sediments 3:132–138CrossRefGoogle Scholar
  2. Aquater (1982) Regione Marche. Studio general per la difesa della costa primera fase/San Lorenzo in Campo, Rapporti di Settore, vol. 2, p 706Google Scholar
  3. Bagnold RA (1966) An approach to the sediment transport problem from General physics. US Geol Survey Prof Paper 422-IGoogle Scholar
  4. Bagnold RA (1977) Bedload transport in natural rivers. Water Resour Res 13(2):303–312CrossRefGoogle Scholar
  5. Blanc G, Lapaquellerie Y, Maillet N, Anschutz P (1999) A cadmium budget for the Lot-Garonne fluvial system (France). Hydrobiologia 410:331–341CrossRefGoogle Scholar
  6. Cerdan O, Le Bissonnais Y, Couturier A, Bourennane H, Souchère V (2002) Rill erosion on cultivated hillslopes during two extreme rainfall events in Normandy, France. Soil Tillage Res 67:99–108CrossRefGoogle Scholar
  7. Cerdan O, Poesen J, Govers G, Saby N, Le Bissonnais Y, Gobin A, Vacca A, Quinton J, Auerswald K, Klik A, Kwaad FPM, Roxo MJ (2006) Sheet and rill erosion. In: Boardman J, Poesen J (eds) Soil erosion in Europe. Wiley, New YorkGoogle Scholar
  8. Church M, Slaymaker HO (1989) Desequilibrium of Holocene sediment yield in glaciated British Columbia. Nature 337:452–454CrossRefGoogle Scholar
  9. Coynel A, Schäfer J, Blanc G, Bossy C (2007) Scenario of particulate trace metal and metalloid transport during a major flood event inferred from transient geochemical signals. Appl Geochem 22:821–836CrossRefGoogle Scholar
  10. De Vente J, Poesen J (2005) Predicting soil erosion and sediment yield at the basin scale: scale issues and semi-quantitative models. Earth-Sci Rev 71:95–125CrossRefGoogle Scholar
  11. De Vente J, Poesen J, Bazzoffi P, Van Rompaey A, Verstraeten G (2006) Predicting catchment sediment yield in Mediterranean environments: the importance of sediment sources and connectivity in Italian drainage basins. Earth Surf Proc Land 31:1017–1034CrossRefGoogle Scholar
  12. De Vente J, Poesen J, Arabkhedri M, Verstraeten G (2007) The sediment delivery problem revisited. Prog Phys Geogr 31:155–178CrossRefGoogle Scholar
  13. Douglas G, Palmer M, Caitcheon G (2003) The provenance of sediments in Moreton Bay, Australia: a synthesis of major, trace element and Sr–Nd–Pb isotopic geochemistry, modelling and landscape analysis. Hydrobiologia 494:145–152CrossRefGoogle Scholar
  14. FAO (Food and Agriculture Organization of the United Nations) (2008) AQUASTAT: Global River Sediment Yields Database. Land and Water Development Division. <http://www.fao.org/ag/aGL/aglw/aquastat/sediment/index.asp>
  15. Ferro V, Minacapilli M (1995) Sediment delivery processes at basin scale. Hydrol Sci J 40:703–717Google Scholar
  16. Förstner U, Heise S, Schwartz R, Westrich BJ, Ahlf W (2004) Historical contaminated sediments and soils at the river basin scale. Examples from the Elbe River catchment area. J Soils Sediments 4:247–260CrossRefGoogle Scholar
  17. Heinrich A (2007) Sediment management: an essential element of river basin management plans. J Soils Sediments 7:117–132CrossRefGoogle Scholar
  18. Holeman JN (1968) The sediment yield of major rivers of the world. Water Resour Res 4(4):737–747CrossRefGoogle Scholar
  19. Hooke J (2003) Coarse sediment connectivity in river channel systems: a conceptual framework and methodology. Geomorphology 56:79–94CrossRefGoogle Scholar
  20. Int. Assoc. Sci./UNESCO (1974) Gross sediment transport into the oceans, preliminary Edition: Unesco SC. 4/WS/33, 4 p. plus 6 tables and 2 mapsGoogle Scholar
  21. Judson S (1968) Erosion rates near Rome, Italy. Science 60:1444–1445CrossRefGoogle Scholar
  22. Kempe S (1992) die Elbe. der geologische Blick. In: Die Elbe, ein Lebenslauf, Deutsches Historisches Museum, Berlin, pp 25–33Google Scholar
  23. Kempe S, Mycke B, Seeger M (1981) Flußfrachten und erosionsraten in Mitteleuropa 1966–1973. Wasser und Boden 1981(3):126–131Google Scholar
  24. Lane LJ, Hernandez M, Nichols M (1997) Processes controlling sediment yield from watersheds as functions of spatial scale. Environ Model Softw 12(4):355–369CrossRefGoogle Scholar
  25. Lisitzin AP (1972) Sedimentation in the world ocean. Soc Econ Paleont Mineral Spec Pub 17:218Google Scholar
  26. Ludwig W, Probst JL (1998) River sediment discharge to the oceans: present-day controls and global budgets. Am J Sci 298:265–295Google Scholar
  27. Ludwig W, Probst JL, Kempe S (1996) Predicting the oceanic input of organic carbon by continental erosion. Global Biochem Cycles 10:23–41CrossRefGoogle Scholar
  28. Lugo AE (1983) Organic carbon export by riverine waters of Spain. In: Degens ET, Kempe S, Soliman H (eds) Transport of carbon and minerals in major world rivers. Pt. 2: Mitt GeolPaläont Int Univ Hamburg. SCOPE/UNEP special issue 55:267–279Google Scholar
  29. Macaire JJ, Bellemlih S, Di-Giovanni C, De Luca P, Visset L, Bernard J (2002) Sediment yield and storage variations in the Negron River catchment (South Western Parisian Basin, France) during the holocene period. Earth Surf Proc Land 27:991–1009CrossRefGoogle Scholar
  30. Maner SB (1958) Factors affecting sediment delivery rates in the Red Hills physiographic area. Trans Am Geophys Union 39:669–675Google Scholar
  31. Mano V, Moatar F, Coynel A, Etcheber H, Ludwig W, Meybeck M, Nemery J, Poirel A, Blanc G, Schäfer J (2006) Space and time variability of suspended particulate matter (SPM) transport in 32 French rivers (100 to 100,000 km²; daily to yearly). Sediment Dynamics and the Hydromorphology of Fluvial Systems ICCE IAHS International Symposium, 3rd–7th July 2006, Dundee Scotland (Poster Report Booklet), pp 29–37Google Scholar
  32. Meritt WS, Letcher RA, Jakeman AJ (2003) A review of erosion and sediment transport models. Environ Model Softw 18:761–799CrossRefGoogle Scholar
  33. Meybeck M, Ragu A (1995) River discharges to the oceans: an assessment of suspended solids, major ions and nutrients, report, U. N. Environment Programme (UNEP), Nairobi, p 245Google Scholar
  34. Milliman JD, Meade RH (1983) World Wide delivery of river sediment to the ocean. J Geol 91:1–21CrossRefGoogle Scholar
  35. Milliman JD, Syvitski PM (1992) Geomorphic/tectonic control of sediment discharges to the ocean: the importance of small montainous rivers. J Geology 100:525–544CrossRefGoogle Scholar
  36. Milliman JD, Rutkowski C, Meybeck M (1995) River discharge to the sea: a global river index(GLORI). LOICZ Reports & Studies, No. 2. The Netherlands, p 125Google Scholar
  37. Moatar F, Person G, Meybeck M, Coynel A, Etcheber H, Crouzet P (2006) The influence of contrasting suspended particulate matter transport regimes on the bias and precision of flux estimates. Sci Total Environ 370(2–3):515–531Google Scholar
  38. Nearing MA, Romkens MJM, Norton LD, Stott DE, Rhoton FE, Laflen JM, Flanagan DC, Alonso CV, Binger RL, Dabney SM, Doering OC, Huang CH, McGregor KC, Simon A (2000) Measurements and models of soil loss rates. Science 290(5495):1300–1301CrossRefGoogle Scholar
  39. Owens PN (2005a) Soil erosion and sediment fluxes in river basins: the influence of anthropogenic activities and climate change. In: Lens P, Grotenhuis T, Malina G, Tabak H (eds) Soil and sediment remediation. IWA, London, pp 418–433Google Scholar
  40. Owens PN (2005b) Conceptual models and budgets for sediment management at the river basin scale. J Soils Sediments 5:201–212CrossRefGoogle Scholar
  41. Owens PN, Batalla RJ (2003) A first attempt to approximate Europe’s sediment budget. SedNet Work Package 2 Report. http://www.sednet.org
  42. Owens PN, Walling DE (2003) Temporal changes in the metal and phosphorus content of suspended sediment transported by Yorkshire rivers, U.K. over the last 100 years, as recorded by overbank floodplain deposits. Hydrobiologia 494:185–191CrossRefGoogle Scholar
  43. Owens PN, Walling DE, Shanahan J, He Q, Foster IDL (1997) The use of caesium-137 measurements to establish a sediment budget for the Start River catchment, Devon, UK. Hydrol Sci J 42:405–423CrossRefGoogle Scholar
  44. Owens PN, Apitz S, Batalla R, Collins A, Eisma M, Glindemann H, Hoonstra S, Köthe H, Quinton J, Taylor K, Westrich B, White S, Wilkinson H (2004) Sediment management at the river basin scale: synthesis of SedNet Working Group 2 outcomes. J Soils Sediments 4:219–222CrossRefGoogle Scholar
  45. Palanques A, Guillen J, Maldonado A (1990) Recent influence of man in the Ebro margin sedimentation system, northwestern Mediterranean Sea. Mar Geol 95:247–263CrossRefGoogle Scholar
  46. Panin A (2004) Land-ocean sediment transfer in paleotimes, and implications for present day natural fluvial fluxes. In: Golosov V, Belyaev V, Walling DE (eds) Sediment transfer through the fluvial system. IAHS, Wallingford, pp 115–124Google Scholar
  47. Philips JD, Gares P, Slattery MC (1999) Agricultural soil redistribution and landscape complexity. Landscape Ecol 14:197–211CrossRefGoogle Scholar
  48. Poesen J, Lavee H (1994) Rock fragments in top soils—significance and processes. Catena 23:1–28CrossRefGoogle Scholar
  49. Poesen J, Van Wesemael B, Govers G, Martinez-Fernandez J, Desmet P, Vandaele K, Quine T, Degraer G (1997) Patterns of rock fragment cover generated by tillage erosion. Geomorphology 18:183–197CrossRefGoogle Scholar
  50. Probst J-L (1983) Hydrologie du bassin de la Garonne. Modèle de mélanges. Bilan de l'érosion. Exportation des phosphates et des nitrates. Thèse de Doctorat de 3 ème Cycle. Université P. Sabatier de Toulouse, p 148Google Scholar
  51. Probst JL, Bazerbachi A (1986) Transports en solution et en suspension par la Garonne supérieure. Strasbourg, Sciences géologiques, Bulletin 39:79–98Google Scholar
  52. Prosser IP, Rustomji P, Young WJ, Moran CJ, Hughes AO (2001) Constructing river basin sediment budgets for the national land and water resources audit, Tech. Rep. 15/01, CSIRO Land and Water, CanberraGoogle Scholar
  53. Puigdefabregas J, Alonso JM, Delgado L, Domingo F, Cueto M, Gutierrez L, Lazaro R, Nicolau JM, Sanchez G, Sole A, Vidal S (1996) The Rambla Honda field site: interactions of soil and vegetation along a catena in semi-arid Southeast Spain. In: Brandt CJ, Thornes JB (eds) Mediterranean desertification and land use. Wiley, Chichester, pp 137–168Google Scholar
  54. Rovira A, Batalla RJ (2006) Temporal distribution of suspended sediment transport in Mediterranean basin: the Lower Tordera (NE Spain). Geomorphology 79(1–2):58–71CrossRefGoogle Scholar
  55. Slaymaker O (2003) The sediment budget as conceptual framework and management tool. Hydrobiologia 494:71–82CrossRefGoogle Scholar
  56. Snoussi M, Jouanneau JM, Latouche C (1989) Impact du climat sur les apports fluviatiles : étude comparative des flux de l'Adour et du Souss (Maroc). Bull. Inst.Geol.Bassin d’Aquitaine. Bordeaux 46:119–126Google Scholar
  57. Summer W, Walling DE (eds) (2002) Modelling erosion, sediment transport and sediment yield. OHP-VI Technical Documents in Hydrology 60, UNESCO, ParisGoogle Scholar
  58. Syvitski JPM, Peckham SD, Hilberman R, Mulder T (2003) Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sediment Geol 162:5–24CrossRefGoogle Scholar
  59. Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–380CrossRefGoogle Scholar
  60. Trimble SW (1983) A sediment budget for Coon Creek Basin in the riftless area, Wisconsin, 1853–1977. Am J Sci 283:454–474Google Scholar
  61. Trimble SW, Crosson P (2000a) Land use—US soil erosion rates—myth and reality. Science 289(5477):248–250CrossRefGoogle Scholar
  62. Trimble SW, Crosson P (2000b) Measurements and models of soil loss rates—response. Science 290(5495):1301–1301Google Scholar
  63. UNESCO (1971) Discharge of selected rivers of the World. A contribution to the Intern. Hydrol. Dec., vol. I–II, UNESCO, ParisGoogle Scholar
  64. UNESCO (1978) WORRI World Register of Rivers Discharging into the Oceans. Provisional Report (Unpublished Rept), Unesco, 7pp + annexesGoogle Scholar
  65. UNESCO/UNEP (1978) Catalogue des principaux fleuves se jetant dans la Méditerranée. Unesco IHP/MED/INF.1, p 21Google Scholar
  66. Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G, Kosmas C, Giraldez JV, da Silva JRM, Merckx R (2007) The impact of agricultural soil erosion on the global carbon cycle. Science 318:626–629CrossRefGoogle Scholar
  67. Van Rompaey AJJ, Govers G, Baudet M (1999) A strategy for controlling error of distributed environmental models by aggregation. Int J Geogr Inf Sci 13(6):577–590CrossRefGoogle Scholar
  68. Van Rompaey A, Verstraeten G, Van Oost K, Govers G, Poesen J (2001) Modelling mean annual sediment yield using a distributed approach. Earth Surf Proc Land 26:1221–1236CrossRefGoogle Scholar
  69. Vericat D, Batalla RJ (2005) Sediment transport in a highly regulated fluvial system during two consecutive floods (lower Ebro River, NE Iberian Peninsula). Earth Surf Proc Land 30:385–402CrossRefGoogle Scholar
  70. Vericat D, Batalla RJ (2006) Sediment transport in a large impounded river: the lower Ebro, NE Iberian Peninsula. Geomorphology 79:72–92CrossRefGoogle Scholar
  71. Verstraeten G, Poesen J (2000) Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate. Geomorphology 40:123–144CrossRefGoogle Scholar
  72. Viers J, Dupré B, Gaillardet J (2009) Chemical composition of suspended sediments in World Rivers: new insights from a new database. Sci Total Environ 407:853–868CrossRefGoogle Scholar
  73. Vogt J, Soille P, de Jager A, Rimaviciuté E, Mehl W, Foisneau S, Bodis K, Dusart J, Paracchini ML, Haastrup P, Bamps C (2007) A pan-European River and Catchment Database. European Commission, EUR 22920 EN—Joint Research Centre—Institute for Environment and Sustainability. Luxembourg: Office for Official Publications of the European Communities. 120pp. http://ec.europa.eu/dgs/jrc/downloads/jrc_reference_report_2007_10_rivercatchment.pdf
  74. Vörösmarty CJ, Meybeck M, Fekete B, Sharma K, Green P, Syvitski JPM (2003) Anthropogenic sediment retention: major global impact from registered river impoundments. Global Planet Change 39:169–190CrossRefGoogle Scholar
  75. Walling DE (1983) The sediment delivery problem. J Hydrol 65:209–237CrossRefGoogle Scholar
  76. Walling DE (2006) Human impact on land-ocean sediment transfer by the world’s rivers. Geomorphology 79:192–216CrossRefGoogle Scholar
  77. Walling DE, Fang D (2003) Recent trends in the suspended sediment loads of the world’s rivers. Global Planet Change 39(1–2):111–126CrossRefGoogle Scholar
  78. Walling DE, Russell MA, Hodgkinson RA, Zhang Y (2001) Establishing sediment budgets for two small lowland agricultural catchments in the UK. Catena 47:323–353CrossRefGoogle Scholar
  79. Wishmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning. USDA Agricultural Handbook 537Google Scholar
  80. Yang CT (1972) Unit stream power and sediment transport. J Hydraul Div, ASCE 98:1805–1826Google Scholar
  81. Yang CT (1976) Minimum unit stream power and fluvial hydraulics. J Hydraul Div, ASCE 102:919–934Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Magalie Delmas
    • 1
    Email author
  • Olivier Cerdan
    • 1
  • Jean-Marie Mouchel
    • 2
  • Manuel Garcin
    • 1
  1. 1.BRGM ARN/ESLOrléans CedexFrance
  2. 2.UMR SisypheUniversity P&M CurieParisFrance

Personalised recommendations