Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

  • SOILS, SEC 2 * GLOBAL CHANGE, ENVIRON RISK ASSESS, SUSTAINABLE LAND USE * RESEARCH ARTICLE
  • Published:

Changes in soil physical properties of forest floor horizons due to long-term deposition of lignite fly ash

Abstract

Background, aim, and scope

From the beginning of the twentieth century until the 1990s, energy in Upper Lusatia, Saxony in Eastern Germany was produced at power plants that burnt lignite coals. As a result, alkaline fly ash and aerosols from the combustion of brown coal have accumulated in adjacent areas that are partly under forestry. We ask the question, “how have these atmospheric depositions of fly ash influenced the soil physical properties (bulk density, particle density, saturated hydraulic conductivity, pore size distribution, and water repellency) of forest floor horizons?”

Materials and methods

The experimental sites represented typical soil types and stands of the sylviculturally used areas in the region of Upper Lusatia. Three forest sites were located close to the emission sources, where high amounts of fly ashes accumulated, and three control sites were without fly ash enrichment. Pore size distribution, saturated hydraulic conductivity, and bulk density were examined with undisturbed samples (metal cylinder 100 cm³). Disturbed samples were used for the characterization of particle density, texture, and water repellency (Wilhelmy plate method). Additionally, the carbon content was determined. Scanning electron microscopy was used to show fly ash enrichment.

Results

The enrichment of mineral fly ash particles could be proven for sites close to the emission source. Using scanning electron microscopy, spherical fly ash particles could be identified. Total quantities of persistent fly ash enrichment amounted to approximately 150-280 Mg ha–1. The enrichment of fly ash affected the soil-physical characteristics. Close to the emission source (sandy fly ashes), particle density, air capacity, and saturated hydraulic conductivity were significantly increased, whereas the plant available water was significantly reduced. With increasing distance from the emission source (silty fly ashes or no ash enrichment), air capacity and saturated hydraulic conductivity were reduced, while an increase of plant available water was observed. Furthermore, the forest floor horizons close to the emission source were characterized by significantly reduced water repellency due to the dominance of hydrophilic mineral fly ash particles.

Discussion

Fly ash deposition in Upper Lusatia must be considered as relevant for properties of forest soils. Mean particle density was significantly higher at sites with fly ash accumulation. This indicates the admixture of mineral particles. While bulk densities were not noticeably influenced, the increase of particle density and the dominance of sandy to coarse silty particles close to the emission sources cause an increase in total porosity, air capacity, and a relative reduction of plant available water. Hollows in spherical fly ash particles might contribute to the meso- and macropores. Due to the admixture of hydrophilic fly ash, the enriched forest floor horizons feature a distinct increase in potential wettability, which coincides with a higher pore and, hence, nutrient and contaminant accessibility. In combination with a higher saturated hydraulic conductivity, an increase in translocation of dissolved substances can be expected especially in the course of acidification, which causes an additional mobilization of nutrients and contaminants.

Conclusions

With this study, we could prove the impact of fly ash enrichment on physical soil properties of forest floor horizons. Via SEM, we detected fly ash particles. The amounts of persistent fly ash accumulation could modify particle density, thickness, bulk density, and carbon content. To characterize hydraulic properties, we investigated the pore size distribution, the saturated hydraulic conductivity, and a water repellency parameter. Thereby, we detected a distinct increase of coarse pores and an accompanying extremely high saturated hydraulic conductivity. The water repellency parameter indicated a significant decrease of hydrophobicity of fly-ash-enriched forest floor horizons.

Recommendations and perspectives

Fly ash enrichment in forest floor horizons not only causes distinct chemical modifications but also alters soil physical properties, which must be considered in further hydrological investigations, as they may influence seepage of water and contaminant translocation within the soil and into groundwater.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

ac:

air capacity

Ct:

total carbon content

ffh:

forest floor horizon

Ks:

saturated hydraulic conductivity

paw:

plant available water

SEM:

scanning electron microscopy

tpv:

total pore volume

wp:

water content at the wilting point

θ wpm :

advancing Wilhelmy plate method contact angle

ρ S :

particle density

ρ B :

bulk density

References

  1. Ad-hoc-AG Boden (2005) Bodenkundliche Kartieranleitung, 5th edn. Hannover, Germany 438 pp

  2. Bachmann J, Woche SK, Goebel M-O, Kirkham MB, Horton R (2003) Extended methodology for determinig wetting properties of porous media. Water Resour Res 39:1353

  3. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Genf, 210 pp.

  4. Bauters TWJ, Steenhuis TS, DiCarlo DA, Nieber JL, Dekker LW, Ritsema CJ, Parlange JY, Haverkamp R (2000) Physics of water repellent soils. J Hydrol 231:233–243

  5. Blake GR, Hartge KH (1986) Particle Density. In: Klute A (ed) Methods of Soil Analysis, Part I. Physical and Mineralogical Methods. Amer Soc Agron and Soil Sci Soc Amer, Madison, pp 363–375

  6. Buczko U, Bens O, Hüttl RF (2006) Water infiltration and hydrophobicity in forest soils of a pine-beech transformation chronosequence. J Hydrol 331:383–395

  7. Buczko U, Bens O, Hüttl RE (2007) Changes in soil water repellency in a pine-beech forest transformation chronosequence: influence of antecedent rainfall and air temperatures. Ecol Eng 31:154–164

  8. Dekker LW, Ritsema CJ (1994) How water moves in a water repellent sandy soil 1. Potential and actual water repellency. Water Resour Res 30:2507–2517

  9. Deutsch-Polnische Kommission für Nachbarschaftliche Zusammenarbeit auf dem Gebiet des Umweltschutzes (ed) (1995) Kraftwerke und Tagebaue beiderseits der deutsch-polnischen Grenze, Berlin, 98 p

  10. Dudas MJ, Warren CJ (1987) Submicroscopic model of fly-ash particles. Geoderma 40:101–114

  11. Dunger W, Dunger I, Engelmann H-D, Schneider R (1972) Untersuchungen zur langzeitwirkung von Industrie-emissionen auf böden, vegetation und bodenfauna des neissetals bei ostritz/oberlausitz. Abh Ber Naturkundemus Görlitz 47:1–40

  12. Dusek J, Vogel T, Lichner L, Cipakova Dohnal M (2006) Simulated cadmium transport in macroporous soil during heavy rainstorm using dual-permeability approach. Biologia Bratislava 61:251–254

  13. Ellerbrock RH, Gerke HH, Bachmann J, Goebel M-O (2005) Composition of organic matter fractions for explainig wettability of three forest soils. Soil Sci Soc Am J 69:57–66

  14. FAO (2006a) Guidelines for soil description. FAO, Rome 97 pp

  15. FAO (2006b) World reference base for soil resources 2006. World Soil Resources Reports No. 103. FAO, Rome, 116 pp

  16. Fritz H, Makeschin F (2007) Chemische Eigenschaften flugaschebeeinflusster Böden der Dübener Heide. Archiv für Naturschutz und Landschaftsforschung 46:105–120

  17. Fritz H, Mengistu A, Makeschin F (2008) Einfluss von Industrieimmissionen auf bodenchemische Kennwerte der Waldböden der Dübener Heide. Forst und Holz 63:18–20

  18. Fürst C, Lorz C, Makeschin F (2007) Development of forest ecosystems after heavy deposition loads considering Dubener Heide as example–challenges for a process-oriented forest management planning. Forest Ecol Manage 248:6–16

  19. Gangloff WJ, Ghodrati M, Sims JT, Vasilas BL (2000) Impact of fly ash amendment and incorporation method on hydraulic properties of a sandy soil. Water Air Soil Pollut 119:231–245

  20. Greiffenhagen A, Wessolek G, Facklam M, Renger M, Stoffregen H (2006) Hydraulic functions and water repellency of forest floor horizons on sandy soils. Geoderma 132:182–195

  21. Hartge KH, Horn R (2009) Die physikalische Untersuchung von Böden. E.Schweitzerbart'sche Verlagsbuchhandlung, Stuttgart 196 pp

  22. Hartmann P, Fleige H, Horn R (2009) Physical properties of forest soils along a fly-ash deposition gradient in Northeast Germany. Geoderma. doi:10.1016/j.geoderma.2009.02.005

  23. Horn R, Taubner H (1997) Wasser- und Lufthaushalt. In: Blume H-P, Schleuss U (eds) Bewertung anthropogener Stadtböden = Schriftenreihe des Institut für Pflanzenernährung und Bodenkunde der Christian-Albrechts-Universität zu Kiel. Christian-Albrechts-Universität zu Kiel, Kiel, pp 32–65

  24. Kastler M (2005) Einfluss der Pedogenese auf die räumliche Porengeometrie und damit verbundene hydraulische Transporteigenschaften in Böden aus Braunkohlenaschen. Hallenser Bodenwissenschaftliche Abhandlungen, 9. Der Andere Verlag, Tönning, 150 pp

  25. Klose S, Makeschin F (2004) Chemical properties of forest soils along a fly-ash deposition gradient in eastern Germany. Eur J Forest Res 123:3–11

  26. Klose S, Makeschin F (2003) Effects of past fly ash deposition on the forest floor humus chemistry of pine stands in Northeastern Germany. Forest Ecol Manage 183:113–126

  27. Klose S, Tolle R, Baucker E, Makeschin F (2003) Stratigraphic distribution of lignite-derived atmospheric deposits in forest soils of the Upper Lusatian region, East Germany. Water Air Soil Pollut 142:3–25

  28. Koch J, Klose S, Makeschin F (2002) Long-term effect of fly ash accumulation on soil chemical properties. 3rd International Conference on Water Resources and Environment Research, pp 113–118

  29. Kovacs F, Mang B (2002) Solid and fly ash materials of brown coal power plants, their characteristics and utilisation. Acta Montanistica slovaca 7:156–160

  30. Lux H (1970) Ergebnisse von Luftuntersuchungen im Einflussbereich der Kraftwerke um Hirschfelde (Neiße, Oberlausitz). Zeitschrift für die gesamte Hygiene und ihre Grenzgebiete 16:185–187

  31. Neumeister H, Franke C, Nagel C, Peklo G, Peklo R, Zierath R (1991) Immissionsbedingte Stoffeinträge aus der Luft als geomorphologischer Faktor-100 Jahre atmosphärische Deposition im Raum Bitterfeld (Sachsen-anhalt). Geoökodynamik 12:1–40

  32. Pathan SM, Aylmore LAG, Colmer TD (2003) Properties of several fly ash materials in relation to use as soil amendments. J Environ Qual 32:687–693

  33. Redding TE, Hannam KD, Quideau SA, Devito KJ (2005) Particle density of Aspen, Spruce, and pine forest floors in Alberta, Canada. Soil Sci Soc Am J 69:1503–1506

  34. Rumpel C, Knicker H, Kögel-Knabner I, Skjemstad JO, Hüttl RF (1998) Types and chemical composition of organic matter in reforested lignite-rich mine soils. Geoderma 86:123–142

  35. Schaaf W, Neumann C, Hüttl RF (2001) Actual cation exchange capacity in lignite containing pyritic mine soils. J Plant Nutr Soil Sci 164:77–78

  36. Scheffer F, Schachtschabel P (eds) (2002) Lehrbuch der Bodenkunde. Spektrum Akademischer Verlag GmbH, Heidelberg, 593 pp

  37. Tschapek M (1984) Criteria for determining the hydrophilicity-hydrophobicity of soil. Z Pflanzenernähr Bodenk 147:137–147

  38. Weisdorfer M (1999) Einfluss unterschiedlicher Schwefel- und Staubemissionen in der Vergangenheit auf die chemische Entwicklung von Humusauflagen und Mineralböden in Kiefernwaldökosystemen im nordostdeutschen Tiefland. Cottbuser Schriften zu Bodenschutz und Rekultivierung, 4. Technische Universität, Cottbus, 214 pp

  39. Yunusa IAM, Eamus D, DeSilva DL, Murray BR, Burchett MD, Skilbeck GC, Heidrich C (2006) Fly-ash: An exploitable resource for management of Australian agricultural soils. Fuel 85:2337–2344

  40. Zikeli S, Kastler M, Jahn R (2004) Cation exchange properties of soils derived from lignite ashes. J Plant Nutr Soil Sci 167:439–448

  41. Zikeli S, Kastler M, Jahn R (2005) Classification of anthrosols with vitric/andic properties derived from lignite ash. Geoderma 124:253–265

Download references

Acknowledgements

Financial support provided by the German ‘Federal Ministry of Education and Research BMBF’ via the ‘Project Management Jülich PTJ’ (priority program ‘Research for Sustainability FONA’ SPP 0330634D) within the project ENFORCHANGE (‘ENvironments and FORests under CHANGing conditions’) for this study is greatly appreciated. We thank Prof. Dr. P. Schäfer und Ute Schuldt (Institute for Geology, University Kiel, Germany) for scanning electron microscopy. The authors are thankful to Prof. Dr. M. B. Kirkham, Kansas State University USA, for her valuable comments and the language improvements.

Author information

Correspondence to Peter Hartmann.

Additional information

Responsible editor: Hailong Wang

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hartmann, P., Fleige, H. & Horn, R. Changes in soil physical properties of forest floor horizons due to long-term deposition of lignite fly ash. J Soils Sediments 10, 231–239 (2010). https://doi.org/10.1007/s11368-009-0108-7

Download citation

Keywords

  • Bulk density
  • Fly ash
  • Forest floor horizon
  • Particle density
  • Pore size distribution
  • Saturated hydraulic conductivity
  • Scanning electron microscopy
  • Water repellency