Journal of Soils and Sediments

, Volume 9, Issue 4, pp 304–316 | Cite as

Road-deposited sediment, soil and precipitation (RDS) in Bratislava, Slovakia: compositional and spatial assessment of contamination

  • Katrina Krčmová
  • Davina Robertson
  • Veronika Cvečková
  • Stanislav Rapant
URBAN SEDIMENTS A GLOBAL PERSPECTIVE • RESEARCH ARTICLE

Abstract

Background, aim and scope

The urban environment in Bratislava is, in association with rapid urbanisation and industrialisation, significantly influenced by several potential sources of pollution, including automobile exhaust and industry emmissions. Urban road-deposited sediments contain many potentially toxic elements such as Pb, Cr, Cu, Zn and also Fe at concentrations much higher than in soil. In this study, the chemical composition and spatial variability of road-deposited sediments in urban area of Bratislava were assessed for the elements As, Cd, Cr, Cu, Hg, Ni, Pb, Fe and Mn. Additional evaluation of archive data for soil, snow and atmospheric dust was undertaken to provide an integrated view on urban environment contamination.

Materials and methods

Urban road-deposited sediments (RDS) were collected during summer 2003 and 2004 mainly from major city crossroads. RDS samples were analysed for total metal content, pseudo-total metal content (HNO3 digestion) and by a sequential extraction method, grain fraction composition and mineralogical composition (X-ray analysis). Metal concentrations in soil and snow samples from urban and non urban city area were compared.

Results and discussion

The highest concentrations for all metals were found in the finest RDS fraction (<0.125 mm). Whilst in the fraction <1 mm mean concentrations of Cr, Cu and Pb reached 55.2, 143.8 and 34.4 mg kg−1, respectively, for the fraction <0.125 mm, markedly higher contents of these elements were documented at the level of 86.8, 218.4 and 63.1 mg kg−1, respectively. The soil contents of potentially toxic risk elements in the urban area including As, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn were higher than in the non-urban area (except for Cd with similar contents). This distribution pattern of evaluated chemicals in urban and non-urban area is more evident in the case of winter precipitation (snow). The snow concentrations of As, Cr, Cu, Fe, Mn, Pb and Zn in the urban area were two tot five times higher than in non-urban area.

Conclusions and recommendations

Monitoring of road-deposited sediments, dust, soil and precipitation has confirmed the significant contamination of the urban environment in Bratislava with potentially toxic elements that can pose a threat for the health of its residents. Future works should be based on analyses of temporal variability of RDS and analyses of organic matter content.

Keywords

Bratislava Geochemistry Precipitation Road sediment Soil Urban environment 

References

  1. Ahmed KO, Al-Swaidan HM (1993) Lead and cadmium in urban dust of Riyadh, Saudi Arabia. Sci Total Environ 136:205–210CrossRefGoogle Scholar
  2. Al-Khashman OA (2007) The investigation of metal concentrations in street dust samples in Aqaba city, Jordan. Environ Geochem Health 29(3):197–207CrossRefGoogle Scholar
  3. Allmann R (2003) Röntgenpulverdiffraktometrie. Rechnergestuzte Auswertung, Phasenanalyse und Strukturbestimmung. Springer, Berlin, p 275Google Scholar
  4. Backman B, Bodis D, Lahermo P, Rapant S, Tarvainen T (1998) Application of a groundwater contamination index in Finland and Slovakia. Environ Geol 36(1–2):55–64CrossRefGoogle Scholar
  5. Birke M, Rauch U (2000) Urban geochemistry: investigations in the Berlin metropolitan area. Environ Geochem Health 22(3):233–248CrossRefGoogle Scholar
  6. Bodiš D, Lopašovská M, Lopašovský K, Rapant S (2000) Chemické zloženie snehovej pokrývky na Slovensku—výsledky 25-ročného pozorovania. Podzemná voda VI(2):162–173Google Scholar
  7. Carraz F, Taylor KG, Stainsby S, Robertson DJ (2006) Contaminated urban road deposited sediment (RDS), Greater Manchester, UK: a spatial assessment of potential surface water impacts. North West Geography 6:10–19Google Scholar
  8. Charlesworth SM, Lees JA (1999) The distribution of heavy metals in deposited urban dusts and sediments, Coventry, England. Environ Geochem Health 21:97–115CrossRefGoogle Scholar
  9. Charlesworth S, Everett M, McCarthy R, Ordóñez A, De Miguel E (2003) A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environ Int 29:563–573CrossRefGoogle Scholar
  10. Čurlík J, Šefčík P (1999) Geochemical Atlas of Slovakia—part V—soils. Monograph, Ministry of the Environment of the Slovak Republic, geological survey of Slovak Republic, Bratislava, 98 ppGoogle Scholar
  11. De Miguel E, Llamas JF, Chacón E, Berg T, Larssen S, Røyset O, Vadset M (1997) Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead. Atmos Environ 31(17):2733–2740CrossRefGoogle Scholar
  12. Fergusson JE, Kim ND (1991) Trace elements in street and house dusts: sources and speciation. Sci Total Environ 100:125–150CrossRefGoogle Scholar
  13. Hamilton RS, Revitt DM, Warren RS (1984) Levels and physico-chemical association of Cd, Cu, Pb and Zn in road sediments. Sci Total Environ 33:59–74CrossRefGoogle Scholar
  14. Hontoria C, Saa A, Almorox J, Cuadra L, Sánchez A, Gascó JM (2003) The chemical composition of precipitation in Madrid. Water Air Soil Pollut 146(1–4):35–54CrossRefGoogle Scholar
  15. Hricko J, Šefara J, Kružliak P, Martinovič M, Pospíšil M, Tkáčová H, Grand T, Szalaiová V (1993) Bratislava—životné prostredie, abiotická zložka. Final report, Manuscript, Geocomplex, Bratislava, p 311Google Scholar
  16. Krčmová K, Robertson DJ, Gregor M, Rapant S (2005) Geochemistry of Urban street sediments of Bratislava, Slovakia. Slovak Geol Mag 11(4):225–232Google Scholar
  17. Li X, Poon CS, Liu PS (2001) Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl Geochem 16(11–12):1361–1368CrossRefGoogle Scholar
  18. Loredo J, Ordóñez A, Charlesworth S, De Miguel E (2003) Influence of industry on the geochemical urban environment of Mieres (Spain) and associated health risk. Environ Geochem Health 25:307–323CrossRefGoogle Scholar
  19. Mackových D, Nováková J, Šoltýsová H (2003) Optimalization of sequential extraction method for determination of toxic elements in soils and stream sediments. Slovak Geol Mag 9(2–3):129–131Google Scholar
  20. Marsina K, Bodiš D, Havrila M, Janák M, Káčer Š, Kohút M, Lexa J, Rapant S, Vozárová A (1999) Geochemical atlas of Slovak Republic, part III: rocks. Ministry of the Environment, Bratislava 135 ppGoogle Scholar
  21. Mücke HG (2008) Air quality management in the WHO European Region—results of a quality assurance and control programme on air quality monitoring (1994–2004). Environ Int 34(5):648–653CrossRefGoogle Scholar
  22. Norra S, Fjer N, Li F, Chu X, Xie X, Stüben D (2008) The influence of different land uses on mineralogical and chemical composition and horizonation of urban soil profiles in Qingdao, China. J Soils Sediments 8(1):4–16CrossRefGoogle Scholar
  23. Ordóñez A, Loredo J, De Miguel E, Charlesworth S (2003) Distribution of heavy metals in the street dusts and soils of an industrial city in Northern Spain. Arch Environ Contam Toxicol 44(2):160–170CrossRefGoogle Scholar
  24. Peltola P, Astrom M (2003) Urban geochemistry: a multimedia and multielement survey of a small town in Northern Europe. Environ Geochem Health 25(4):397–419CrossRefGoogle Scholar
  25. Preciado HF, Li LY (2006) Evaluation of metal loadings and bioavailability in air, water and soil along two highways of British Columbia, Canada. Water Air Soil Pollut 172(1–4):81–108CrossRefGoogle Scholar
  26. Robertson DJ (2004) An investigation into the petrographic and geochemical characteristics of road-deposited sediment. PhD thesis, Manchester Metropolitan University, ManchesterGoogle Scholar
  27. Robertson DJ, Taylor K (2007) Temporal variability of metal contamination in urban road-deposited sediment in Manchester, UK: implications for urban pollution monitoring. Water Air Soil Pollut 186(1–4):209–220CrossRefGoogle Scholar
  28. Robertson DJ, Taylor KG, Hoon SR (2003) Geochemical and mineral magnetic characterization of urban sediment particulates, Manchester, UK. Appl Geochem 18:269–282CrossRefGoogle Scholar
  29. Sahuquillo A, Lopez-Sanchez JF, Rubio R, Rauret G, Thomas RP, Davidson CM, Ure AM (1999) Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Anal Chim Acta 382:317–327CrossRefGoogle Scholar
  30. SHMU (2006) Air pollution in the Slovak Republic 2004. Slovak Hydrometeorological Institute, Ministry of Environment of the Slovak Republic, Bratislava, p 92Google Scholar
  31. Stone M, Marsalek J (1996) Trace metal composition and speciation in street sediment: Sault Ste, Marie, Canada. Water Air Soil Pollut 87:149–169CrossRefGoogle Scholar
  32. SUSR (2001) Population and housing census. Statistical Office of the Slovak Republic, Bratislava. www.portalstatistics.sk
  33. Sutherland RA, Tack FMG, Ziegler AD, Bussen JO (2004) Metal extraction from road-deposited sediments using nine partial decomposition procedures. Appl Geochem 19(6):947–955CrossRefGoogle Scholar
  34. Varrica D, Dongarrà G, Sabatino G, Monna F (2003) Inorganic geochemistry of roadway dust from the metropolitan area of Palermo, Italy. Environ Geol 44(2):222–230Google Scholar
  35. Vrana K, Bodiš D, Lopašovský K, Rapant S (1989) Regionálno-hydrogeochemické zhodnotenie kvality snehovej pokrývky na území Slovenska. Západné Karpaty, Séria hydrogeológia a inžinierska geológia. GÚDŠ Bratislava 7:87–128Google Scholar
  36. Wang WH, Wong MH, Leharne S, Fisher B (1998) Fractionation and biotoxicity of heavy metals in urban dusts collected from Hong Kong and London. Environ Geochem Health 20:195–198CrossRefGoogle Scholar
  37. WHO (2006) Health risk of particulate matter from long-range transboundary air pollution. European Centre for Environment and Health, Bonn Office, World Health OrganisationGoogle Scholar
  38. Yu S (2007) Interannual variation of annual precipitation and urban effect on precipitation in the Beijing region. Prog Nat Sci 17(9):1042–1050Google Scholar
  39. Zhang C (2006) Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environ Pollut 142(3):501–511CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Katrina Krčmová
    • 1
  • Davina Robertson
    • 2
  • Veronika Cvečková
    • 1
  • Stanislav Rapant
    • 1
  1. 1.Geological Survey of the Slovak RepublicBratislavaSlovak Republic
  2. 2.Department of Environmental and Geographical SciencesManchester Metropolitan UniversityManchesterUK

Personalised recommendations