Defining freshwater as a natural resource: a framework linking water use to the area of protection natural resources

  • Charlotte PradinaudEmail author
  • Stephen Northey
  • Ben Amor
  • Jane Bare
  • Lorenzo Benini
  • Markus Berger
  • Anne-Marie Boulay
  • Guillaume Junqua
  • Michael J. Lathuillière
  • Manuele Margni
  • Masaharu Motoshita
  • Briana Niblick
  • Sandra Payen
  • Stephan Pfister
  • Paula Quinteiro
  • Thomas Sonderegger
  • Ralph K. Rosenbaum



While many examples have shown unsustainable use of freshwater resources, existing LCIA methods for water use do not comprehensively address impacts to natural resources for future generations. This framework aims to (1) define freshwater resource as an item to protect within the Area of Protection (AoP) natural resources, (2) identify relevant impact pathways affecting freshwater resources, and (3) outline methodological choices for impact characterization model development.


Considering the current scope of the AoP natural resources, the complex nature of freshwater resources and its important dimensions to safeguard safe future supply, a definition of freshwater resource is proposed, including water quality aspects. In order to clearly define what is to be protected, the freshwater resource is put in perspective through the lens of the three main safeguard subjects defined by Dewulf et al. (2015). In addition, an extensive literature review identifies a wide range of possible impact pathways to freshwater resources, establishing the link between different inventory elementary flows (water consumption, emissions, and land use) and their potential to cause long-term freshwater depletion or degradation.

Results and discussion

Freshwater as a resource has a particular status in LCA resource assessment. First, it exists in the form of three types of resources: flow, fund, or stock. Then, in addition to being a resource for human economic activities (e.g., hydropower), it is above all a non-substitutable support for life that can be affected by both consumption (source function) and pollution (sink function). Therefore, both types of elementary flows (water consumption and emissions) should be linked to a damage indicator for freshwater as a resource. Land use is also identified as a potential stressor to freshwater resources by altering runoff, infiltration, and erosion processes as well as evapotranspiration. It is suggested to use the concept of recovery period to operationalize this framework: when the recovery period lasts longer than a given period of time, impacts are considered to be irreversible and fall into the concern of freshwater resources protection (i.e., affecting future generations), while short-term impacts effect the AoP ecosystem quality and human health directly. It is shown that it is relevant to include this concept in the impact assessment stage in order to discriminate the long-term from the short-term impacts, as some dynamic fate models already do.


This framework provides a solid basis for the consistent development of future LCIA methods for freshwater resources, thereby capturing the potential long-term impacts that could warn decision makers about potential safe water supply issues in the future.


Freshwater resources Life cycle impact assessment Long-term depletion Long-term pollution Water use 



The valuable feedback provided by Andrew Henderson and Cristina Madrid López during the article’s preparation is gratefully appreciated.

Funding information

This study was conducted through the International Working Group for Water Use in Life Cycle Assessment (WULCA), which receives contributions from the UN Environment Life Cycle Initiative. Financial support of the Industrial Chair for Environmental and Social Sustainability Assessment “ELSA-PACT” (grant no. 13-CHIN-0005-01) was also received from ANR, the Occitanie Region, ONEMA, its industrial partners (BRL, SCP, SUEZ Groupe, VINADEIS, Compagnie Fruitière), and IMT Mines Ales.

Compliance with ethical standards


The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the organizations to which they belong. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the UN Environment Life Cycle Initiative concerning the legal status of any country, territory, city or area or of its authorities, or concerning delimitation of its frontiers or boundaries. Moreover, the views expressed do not necessarily represent the decision or the state policy of the UN Environment Life Cycle Initiative, nor does citing of trade names or commercial processes constitute endorsement.

Supplementary material

11367_2018_1543_MOESM1_ESM.docx (102 kb)
ESM 1 (DOCX 101 kb)


  1. Amores MJ, Verones F, Raptis C, Juraske R, Pfister S, Stoessel F, Antón A, Castells F, Hellweg S (2013) Biodiversity impacts from salinity increase in a coastal Wetland. Environ Sci Technol 47(12):1–7Google Scholar
  2. Aylward B, Bandyopadhyay J, Belausteguigotia J-C, Börkey P, Cassar A, Meadors L, Saade L, Siebentritt M, Stein R, Tognetti S, Tortajada C, Allan T, Bauer C, Bruch C, Guimaraes-Pereira A, Kendall M, Kiersch B, Landry C, Rodriguez EM, Meinzen-Dick R, Moellendorf S, Pagiola S, Porras I, Ratner B, Shea A, Swallow B, Thomich T, Voutchkov N, Bruce A, Bo P, Moellendorf S (2005) Freshwater ecosystem services. In: Ecosystems and Human Well-Being: Policy Responses 3:213–255Google Scholar
  3. Bakas I, Hauschild MZ, Astrup TF, Rosenbaum RK (2015) Preparing the ground for an operational handling of long-term emissions in LCA. Int J Life Cycle Assess 20:1444–1455CrossRefGoogle Scholar
  4. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, pp 210Google Scholar
  5. Bayart JB, Bulle C, Deschênes L, Margni M, Pfister S, Vince F, Koehler A (2010) A framework for assessing off-stream freshwater use in LCA. Int J Life Cycle Assess 15:439–453CrossRefGoogle Scholar
  6. Berger M, Finkbeiner M (2013) Methodological challenges in volumetric and impact-oriented water footprints. J Ind Ecol 17:79–89CrossRefGoogle Scholar
  7. Boulay A-M, Bulle C, Bayart JB, Deschênes L, Margni M (2011) Regional characterization of freshwater use in LCA: modeling direct impacts on human health. Environ Sci Technol 45:8948–8957CrossRefGoogle Scholar
  8. Boulay A-M, Hoekstra AY, Vionnet S (2013) Complementarities of water-focused life cycle assessment and water footprint assessment. Environ Sci Technol 47:11926–11927CrossRefGoogle Scholar
  9. Boulay A, Bare J, Benini L, Berger M, Lathuillière MJ, Manzardo A, Margni M, Motoshita M, Núñez M, Pastor AV, Ridoutt B, Oki T, Worbe S, Pfister S (2018) The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int J Life Cycle Assess 23:368–378CrossRefGoogle Scholar
  10. Cabidoche Y, Lesueur Jannoyer M (2011) Pollution durable des sols par la chlordécone aux Antilles : comment la gérer? Innov Agron 16:1–11Google Scholar
  11. Cabidoche YM, Achard R, Cattan P, Clermont-Dauphin C, Massat F, Sansoulet J (2009) Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: a simple leaching model accounts for current residue. Environ Pollut 157:1697–1705CrossRefGoogle Scholar
  12. Chapman D (1996) Water quality assessments - a guide to use of biota, sediments and water in environmental monitoring. E&FN Spon, Cambridge. Google Scholar
  13. Chapman D (1992) Water quality assessments. Taylor & Francis, AbingdonGoogle Scholar
  14. Curran M, Hellweg S, Beck J (2014) Is there any empirical support for biodiversity offset policy? Ecol Appl 24:617–632CrossRefGoogle Scholar
  15. Custodio E (2002) Aquifer overexploitation: what does it mean? Hydrogeol J 10:254–277CrossRefGoogle Scholar
  16. Davis RA, Welty AT, Borrego J, Morales JA, Pendon JG, Ryan JG (2000) Rio Tinto estuary (Spain):5000 years of pollution\r. Environ Geol 39:1107–1116CrossRefGoogle Scholar
  17. Demlie M, Wohnlich S (2006) Soil and groundwater pollution of an urban catchment by trace metals: case study of the Addis Ababa region, central Ethiopia. Environ Geol 51:421–431CrossRefGoogle Scholar
  18. van der Ent RJ, Savenije HHG, Schaefli B, Steele-Dunne SC (2010) Origin and fate of atmospheric moisture over continents. Water Resour Res 46:1–12Google Scholar
  19. Dewulf J, Benini L, Mancini L, Sala S, Blengini GA, Ardente F, Recchioni M, Maes J, Pant R, Pennington D (2015) Rethinking the area of protection “natural resources” in life cycle assessment. Environ Sci Technol 49:5310–5317CrossRefGoogle Scholar
  20. Ellison D, Futter MN, Bishop K (2012) On the forest cover-water yield debate: from demand- to supply-side thinking. Glob Chang Biol 18:806–820CrossRefGoogle Scholar
  21. Falkenmark M, Molden D (2008) Wake up to realities of river basin closure. Int J Water Resour Dev 24:201–215CrossRefGoogle Scholar
  22. Falkenmark M, Rockstrom J (2006) The new blue and green water paradigm: breaking new ground for water resources planning and management. Water Resour Plan Manag 132:129–132CrossRefGoogle Scholar
  23. Famiglietti JS (2014) The global groundwater crisis. Nat Clim Chang 4:945–948CrossRefGoogle Scholar
  24. Fantke P, Jolliet O, Wannaz C (2015) Dynamic toxicity modelling based on the USEtox matrix framework SETAC Europe 25th Annual MeetingGoogle Scholar
  25. Foster S, Chilton J, Nijsten GJ, Richts A (2013) Groundwater-a global focus on the “local resource”. Curr Opin Environ Sustain 5:685–695CrossRefGoogle Scholar
  26. Galloway DL, Burbey TJ (2011) Review: regional land subsidence accompanying groundwater extraction. Hydrogeol J 19:1459–1486CrossRefGoogle Scholar
  27. Gleeson T, VanderSteen J, Sophocleous MA, Taniguchi M, Alley WM, Allen DM, Zhou Y (2010) Groundwater sustainability strategies. Nat Geosci 3:378–379CrossRefGoogle Scholar
  28. Gleeson T, Befus KM, Jasechko S, Luijendijk E, Cardenas MB (2015) The global volume and distribution of modern groundwater. Nat Geosci 9:161CrossRefGoogle Scholar
  29. Guinée JB, Heijungs R (1995) A proposal for the definition of resource equivalency factors for use in product life-cycle assessment. Environ Toxicol Chem 14:917–925CrossRefGoogle Scholar
  30. Hayhoe SJ, Neill C, Porder S, Mchorney R, Lefebvre P, Coe MT, Elsenbeer H, Krusche AV (2011) Conversion to soy on the Amazonian agricultural frontier increases streamflow without affecting stormflow dynamics. Glob Chang Biol 17:1821–1833CrossRefGoogle Scholar
  31. Hellweg S, Frischknecht R (2004) Evaluation of long-term impacts in LCA. Int J Life Cycle Assess 9:339–341CrossRefGoogle Scholar
  32. Hischier R, Weidema B, Althaus H-J, Bauer C, Doka G, Dones R, Frischknecht R, Hellweg S, Humbert S, Jungbluth N, Köllner T, Loerincik Y, Margni M, Nemecek T (2010) Implementation of life cycle impact assessment methods. Ecoinvent report No. 3, v2.2. Swiss Centre for Life Cycle Inventories, DübendorfGoogle Scholar
  33. HLPE (2015) Water for food security and nutrition. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security, RomeGoogle Scholar
  34. Hoekstra AY, Wiedmann TO (2014) Humanity’s unsustainable environmental footprint. Science 344:1114–1117CrossRefGoogle Scholar
  35. Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM (2011) The water footprint assessment manual, setting the global standard. Earthscan, London, p 228Google Scholar
  36. Hudson River Natural Resource Trustees (2013) PCB contamination of the Hudson river ecosystem, compilation of contamination data through 2008: Hudson river natural resource damage assessment. Hudson river natural resource trustees, state of New York, U.S. Department of Commerce, U.S. Department of Interior, United States, January 2013, p 38Google Scholar
  37. ISO (2006) ISO 14044, environmental management - life cycle assessment: requirements and guidelines. International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  38. ISO 14046 (2014) ISO 14046, environmental management - water footprint: principles, requirements and guidelines. International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  39. Jiménez Cisneros BE, Oki T, Arnell NW, Benito G, Cogley JG, Döll P, Jiang T, Mwakalila SS (2014) Impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Press CU (ed) . Cambridge University Press, Cambridge, pp 229–269Google Scholar
  40. Keys PW, Wang-Erlandsson L, Gordon LJ (2016) Revealing invisible water: moisture recycling as an ecosystem service. PLoS One 11:e0151993CrossRefGoogle Scholar
  41. Koehler A (2008) Water use in LCA: managing the planet’s freshwater resources. Int J Life Cycle Assess 13:451–455CrossRefGoogle Scholar
  42. Koellner T, de Baan L, Beck T, Brandão M, Civit B, Margni M, LMI C, Saad R, de Souza DM, Müller-Wenk R (2013) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18:1188–1202CrossRefGoogle Scholar
  43. Konikow LF, Kendy E (2005) Groundwater depletion: a global problem. Hydrogeol J 13:317–320CrossRefGoogle Scholar
  44. Kounina A, Margni M, Bayart J-B, Boulay A-M, Berger M, Bulle C, Frischknecht R, Koehler A, Milà i, Canals L, Motoshita M, Núñez M, Peters G, Pfister S, Ridoutt B, Zelm R, Verones F, Humbert S (2013) Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int J Life Cycle Assess 18:707–721CrossRefGoogle Scholar
  45. Lemming G, Hauschild MZ, Bjerg PL (2010) Life cycle assessment of soil and groundwater remediation technologies: literature review. Int J Life Cycle Assess 15:115–127CrossRefGoogle Scholar
  46. Margat J, van der Gun J (2013) Groundwater around the world: a geographical synopsis. CRC Press, LondonCrossRefGoogle Scholar
  47. Micklin P (2007) The Aral Sea disaster. Annu Rev Earth Planet Sci 35:47–72CrossRefGoogle Scholar
  48. Milà i Canals L, Chenoweth J, Chapagain A, Orr S, Antón A, Clift R (2009) Assessing freshwater use impacts in LCA: part I - inventory modelling and characterisation factors for the main impact pathways. Int J Life Cycle Assess 14:28–42CrossRefGoogle Scholar
  49. Núñez M, Rosenbaum RK, Karimpour S, Boulay A-M, Lathuillière MJ, Margni M, Scherer L, Verones F, Pfister S (2018) A multimedia hydrological fate modeling framework to assess water consumption impacts in life cycle assessment. Environ Sci Technol 52:4658–4667Google Scholar
  50. Van Oers L, Guinée J (2016) The abiotic depletion potential: background, updates, and future. Resources 5:16Google Scholar
  51. Van Oers L, De Koning A, Guinée JB, Huppes G (2002) Abiotic resource depletion in LCA. Road and Hydraulic Engineering Institute, Ministry of Transport and Water, AmsterdamGoogle Scholar
  52. Payen S, Basset-Mens C, Núñez M, Follain S, Grünberger O, Marlet S, Perret S, Roux P (2016) Salinisation impacts in life cycle assessment: a review of challenges and options towards their consistent integration. Int J Life Cycle Assess 21:577–594CrossRefGoogle Scholar
  53. Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in life cycle assessment. Environ Sci Technol 43:4098–4104CrossRefGoogle Scholar
  54. Pfister S, Bayer P, Koehler A, Hellweg S (2011) Projected water consumption in future global agriculture: scenarios and related impacts. Sci Total Environ 409:4206–4216CrossRefGoogle Scholar
  55. Pfister S, Vionnet S, Levova T, Humbert S (2016) Ecoinvent 3: assessing water use in LCA and facilitating water footprinting. Int J Life Cycle Assess 21:1349–1360CrossRefGoogle Scholar
  56. Pfister S, Boulay AM, Berger M, Hadjikakou M, Motoshita M, Hess T, Ridoutt B, Weinzettel J, Scherer L, Döll P, Manzardo A, Núñez M, Verones F, Humbert S, Buxmann K, Harding K, Benini L, Oki T, Finkbeiner M, Henderson A (2017) Understanding the LCA and ISO water footprint: a response to Hoekstra (2016) A critique on the water-scarcity weighted water footprint in LCA. Ecol Indic 72:352–359CrossRefGoogle Scholar
  57. Quinteiro P, Dias AC, Silva M, Ridoutt BG, Arroja L (2015) A contribution to the environmental impact assessment of green water flows. J Clean Prod 93:318–329CrossRefGoogle Scholar
  58. Ridoutt BG, Pfister S (2010) Reducing humanity’s water footprint. Environ Sci Technol 44:6019–6021CrossRefGoogle Scholar
  59. Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone TE, Payet J, Schuhmacher M, van de Meent D, Hauschild MZ (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546CrossRefGoogle Scholar
  60. Rost S, Gerten D, Bondeau A, Lucht W, Rohwer J, Schaphoff S (2008) Agricultural green and blue water consumption and its influence on the global water system. Water Resour Res 44:1–17CrossRefGoogle Scholar
  61. Sala S, Benini L, Castellani V (2016) Environmental footprint - update of life cycle impact assessment methods; DRAFT for TAB (status: May 2, 2016); Resources, water, land. Ispra, ItalyGoogle Scholar
  62. Sampat P (2001) Uncovering groundwater pollution. In: State of the World 2001. (W. W. Norton & Company, Ed.). World Institute, New York, pp 21–42Google Scholar
  63. Scanlon BR, Faunt CC, Longuevergne L, Reedy RC, Alley WM, McGuire VL, McMahon PB (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc Natl Acad Sci 109:9320–9325CrossRefGoogle Scholar
  64. Shimako AH, Tiruta-Barna L, Ahmadi A (2017) Operational integration of time dependent toxicity impact category in dynamic LCA. Sci Total Environ 599–600:806–819CrossRefGoogle Scholar
  65. Sonderegger T, Dewulf J, Fantke P, de Souza DM, Pfister S, Stoessel F, Verones F, Vieira M, Weidema B, Hellweg S (2017) Towards harmonizing natural resources as an area of protection in life cycle impact assessment. Int J Life Cycle Assess 17:1912–1927CrossRefGoogle Scholar
  66. Stewart M, Weidema B (2005) A consistent framework for assessing the impacts from resource use: a focus on resource functionality. Int J Life Cycle Assess 10:240–247CrossRefGoogle Scholar
  67. Tutu H, McCarthy TS, Cukrowska E (2008) The chemical characteristics of acid mine drainage with particular reference to sources, distribution and remediation: the Witwatersrand Basin, South Africa as a case study. Appl Geochem 23:3666–3684CrossRefGoogle Scholar
  68. UNEP (2008) Vitalwater graphics: an overview of the state of the world’s fresh and marine waters, 2nd Edition. United Nations Environment Programme (UNEP), Global Water Policy and StrategyGoogle Scholar
  69. UNEP (2009) Water security and ecosystem services: The critical connection. United Nations Environment Programme (UNEP), Naurobi, KenyaGoogle Scholar
  70. UNEP (2016) A snapshot of the world’s water quality: towards a global assessment. United Nations Environment Programme, Nairobi, Kenya, pp 162Google Scholar
  71. UNESCO (2006) Non-renewable groundwater resources - a guidebook on socially-sustainable management for water-policy makers. In: Foster S, Loucks DP (eds) UNESCO, IHP-VI, Series on Groundwater No. 10Google Scholar
  72. Verones F, Bare J, Bulle C, Frischknecht R Hauschild M, Hellweg S, Henderson AD, Jolliet O, Laurent A, Liao X, Lindner JP, de SDM, Michelsen O, Patouillard L, Pfister S, Posthuma L, Prado V, Ridoutt B, Rosenbaum RK, Sala S, Ugaya C, Vieira M, Fantke P (2017) LCIA framework and cross-cutting issues guidance within the UNEP-SETAC life cycle initiative. J Clean Prod 161:957–967CrossRefGoogle Scholar
  73. Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37(20):L20402Google Scholar
  74. Wada Y, van Beek LPH, Wanders N, Bierkens MFP (2013) Human water consumption intensifies hydrological drought worldwide. Environ Res Lett 8:34036CrossRefGoogle Scholar
  75. Wildman RA Jr, Forde NA (2012) Management of water shortage in the Colorado River basin: evaluating current policy and viablility of interstate water trading. J Am Water Resour Assoc 8:1–12Google Scholar
  76. Winde F, Sandham LA (2004) Uranium pollution of South African streams - an overview of the situation in gold mining areas of the Witwatersrand. GeoJournal 61:131–149CrossRefGoogle Scholar
  77. Younger PL (1997) The longevity of mine water pollution: a basis for decision making. Sci Total Environ 194:457–466CrossRefGoogle Scholar
  78. Zhou J, Chang VWC, Fane AG (2013) An improved life cycle impact assessment (LCIA) approach for assessing aquatic eco-toxic impact of brine disposal from seawater desalination plants. Desalination 308:233–241CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Charlotte Pradinaud
    • 1
    • 2
    Email author
  • Stephen Northey
    • 3
  • Ben Amor
    • 4
  • Jane Bare
    • 5
  • Lorenzo Benini
    • 6
  • Markus Berger
    • 7
  • Anne-Marie Boulay
    • 4
    • 8
  • Guillaume Junqua
    • 2
  • Michael J. Lathuillière
    • 9
    • 10
  • Manuele Margni
    • 8
  • Masaharu Motoshita
    • 11
  • Briana Niblick
    • 5
  • Sandra Payen
    • 12
  • Stephan Pfister
    • 13
  • Paula Quinteiro
    • 14
  • Thomas Sonderegger
    • 13
  • Ralph K. Rosenbaum
    • 1
  1. 1.ITAP, Irstea, Montpellier SupAgro, ELSA-PACT Industrial ChairUniv MontpellierMontpellierFrance
  2. 2.LGEI, IMT Mines AlesUniv MontpellierAlesFrance
  3. 3.Department of Civil EngineeringMonash UniversityClaytonAustralia
  4. 4.LIRIDESherbrooke UniversitySherbrookeCanada
  5. 5.National Risk Management Research LaboratoryU.S. Environmental Protection AgencyCincinnatiUSA
  6. 6.European Environment AgencyCopenhagenDenmark
  7. 7.Chair of Sustainable EngineeringTechnische Universität BerlinBerlinGermany
  8. 8.CIRAIGPolytechnique MontrealMontrealCanada
  9. 9.Environment and SustainabilityInstitute for ResourcesVancouverCanada
  10. 10.Stockholm Environment InstituteStockholmSweden
  11. 11.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  12. 12.AgResearch Ruakura Research CentreHamiltonNew Zealand
  13. 13.ETH ZurichZurichSwitzerland
  14. 14.Centre for Environmental and Marine StudiesUniversity of AveiroAveiroPortugal

Personalised recommendations