Advertisement

Inter-annual variability in the environmental performance of viticulture technical management routes—a case study in the Middle Loire Valley (France)

  • Sandra BeauchetEmail author
  • Anthony Rouault
  • Marie Thiollet-Scholtus
  • Marguerite Renouf
  • Frédérique Jourjon
  • Christel Renaud-GentiéEmail author
LCA FOR AGRICULTURAL PRACTICES AND BIOBASED INDUSTRIAL PRODUCTS
  • 61 Downloads

Abstract

Purpose

Improving the environmental performances of viticulture practices is particularly complicated during unfavorable climatic conditions because of the need for fungal and other pest pressure and the variability of phytosanitary control methods available for winegrowers. However, winegrowers wish to improve the environmental performances of their practices regardless of climatic conditions. The objective of the study was to quantify the variability in environmental impacts due to climatic variations, and changes in viticulture practices induced by climatic variability.

Methods

Life cycle assessment was used to evaluate the environmental impacts of viticulture technical management routes (TMR) implemented on five plots in the Loire Valley for the Chenin Blanc grape variety. These TMRs are representative of the range of practices used in the region, including intensive conventional practices to moderate organic practices. The study covered two different years of production (2011 and 2013) under contrasting climatic conditions. The first year (2011) was hot and dry, which are favorable conditions for viticulture, while the second year (2013) was cold and humid, which are unfavorable conditions.

Results and discussion

During the unfavorable year, the number of phytosanitary treatments and soil maintenance interventions increased for most of the studied TMRs. This meant that the inter-annual variability in environmental impact was significant, depending on the type of TMR, with differences in impacts ranging from 19% to more than 40% between 2011 and 2013. Managing environmental impacts was found to be more difficult for the organic systems when climatic conditions are unfavorable (in 2013). The non-organic TMRs showed less variation in environmental impacts than the organic TMRs between the 2 years studied.

Conclusions

This study shows the importance of taking into account inter-annual variability in environmental assessments of viticulture systems. Indeed, winegrowers do not respond the same way to climate variability mainly with regard to plant protection and soil maintenance. Viticulture is very sensitive to inter-annual climate variations due to the parasitic pressure variability. The different production systems do not give to winegrowers the same possibilities for adapting practices to limit their impact on the environment.

Keywords

Climate change Environmental assessment Fungicides Life cycle assessment Pesticides Vineyard Viticulture practices Wine 

Notes

Acknowledgements

The authors are thankful to Charlie Renaud for his participation.

Funding information

This work was supported by the CASDAR (Compte d’Affection Spécial du Développement Agricole et Rural) program of the French Ministry of Agriculture: QUALENVIC. This study was also funded by ADEME (French Environmental Agency) and the Regional Council of Pays de la Loire.

Supplementary material

11367_2018_1516_MOESM1_ESM.docx (99 kb)
ESM 1 (DOCX 99 kb)

References

  1. ADEME (2005) Introduction à l’Analyse de Cycle de Vie (ACV) Note de synthese externe, 14Google Scholar
  2. Bal F (2005) Pesticides, la fin de la loi du silence? La Revue du vin de France n°491 / mai 2005. http://www.larvf.com/,vins-viticulture-pesticides-analyse-enquete-dangers-sante-maladies-vignerons,2001116,4244181.asp. Searched on 07/21/2016
  3. Baschet-Pingault (2009) La réduction des usages de pesticides: le plan Ecophyto 2018. Le rôle des indicateurs d’utilisation pour évaluer l’atteinte des objectifs. Analyse; Prospective et évaluation, vol 4Google Scholar
  4. Beauchet S, Botreau R, Bockstaller C, Renaud-Gentié C, Siret R, Thiollet-Scholtus M, Jourjon F (n.d.) Part 2. Application of a multi-criteria decision assessment method to conjointly assess environmental impact and quality of the product in viticulture; case of five technical management routes of the Chenin blanc grape variety in the middle Loire Valley, France. Ecol IndGoogle Scholar
  5. Beaugrand G, Goberville E (2010) Conséquences des changements climatiques en milieu océanique. VertigO (Hors-série number 8)Google Scholar
  6. Bellon-Maurel V, Peters GM, Clermidy S, Frizarin G, Sinfort C, Ojeda H, Roux P, Short MD (2015) Streamlining life cycle inventory data generation in agriculture using traceability data and information and communication technologies – part II: application to viticulture. J Clean Prod 87:119–129CrossRefGoogle Scholar
  7. Bertrand F, Richard E (2014) L’action des collectivités territoriales face au problème climat en France: une caractérisation par les politiques environnementales. Nat Sci Sociétés 22(3):195–203CrossRefGoogle Scholar
  8. Bosco S, Di Bene C, Galli M, Remorini D, Massai R, Bonari E (2011) Greenhouse gas emissions in the agricultural phase of wine production in the Maremma rural district in Tuscany, Italy. Ital J Agron 6(2):15CrossRefGoogle Scholar
  9. Caprio E, Nervo B, Isaia M, Allegro G, Rolando A (2015) Organic versus conventional systems in viticulture: comparative effects on spiders and carabids in vineyards and adjacent forests. Agric Syst 136:61–69CrossRefGoogle Scholar
  10. Coll P, Le Cadre E, Blanchart E, Hinsinger P, Villenave C (2011) Organic viticulture and soil quality: a long-term study in Southern France. Appl Soil Ecol 50:37–44Google Scholar
  11. Crozier P, Bidaut F, Dubus C, Peres G, Cluzeau D, Chaussaud R (2010) Comparaison de trois modes de production en bourgogne viticole: premiers résultatsGoogle Scholar
  12. Foster (2005) Revised universal soil loss equation—version 2 (RUSLE2). USDA – Agric. Res. Service, Washington DCGoogle Scholar
  13. Freiermuth R (2006) Modell zur Berechnung der Schwermetallflüsse in der Landwirtschaftlichen Ökobilanz. Agroscope FAL, Reckenholz 42 pGoogle Scholar
  14. Gaviglio C, Saccharin P, Barthes N (2009) Etude des performances énergétiques des matériels viticoles. IFV, matevi-france 45:1–8Google Scholar
  15. Gazzarin C (2011) Coûts-machines 2011: Avec les coûts des parties du bâtiment et des installations mécaniques. Station de recherche Agroscope reckenholz-Tanikon, Ettenhausen ART:56Google Scholar
  16. Giordano S (2015) Agriculture traditionnelle et innovante. Le secteur vitivinicole biologique: une comparaison entre Les Pouilles (Italie) et le Languedoc-Roussillon (France). Université Paul Valéry-Montpellier IIIGoogle Scholar
  17. Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, van Zelm R (2009) ReCiPe 2008; a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. ReCiPe 1Google Scholar
  18. Goedkoop M, Oele M, Leijting J, Ponsioen T, Meijer E (2013) SimaPro 8. Database Manual Methods Library Pré ConsultantsGoogle Scholar
  19. Huijbregts MA, Steinmann ZJ, Elshout PM, Stam G, Verones F, Vieira MD, Hollander A, Zijp M, van Zelm R. (2016). ReCiPe 2016: a harmonized life cycle impact assessment method at midpoint and endpoint level report I: characterizationGoogle Scholar
  20. Hutchings N, Webb J, Amon B (2009) Crop production and agricultural soils. In: EMEP/EEA air pollutant emission inventory guidebook. European Environment Agency, CopenhagenGoogle Scholar
  21. International Standards Organization (ISO) (2006a) International Standards Organization ISO 14040, environmental management–life cycle assessment–principles and framework. International Standards Organization, GenevaGoogle Scholar
  22. International Standards Organization (ISO) (2006b) International Standard Organization ISO 14044, environmental management–life cycle assessment–requirements and guidelines. International Standards Organization, GenevaGoogle Scholar
  23. Jones P, Trenberth K, Ambenje P, Bojariu R, Easterling D, Klein T, Parker D, Renwick J, Rusticucci M, Soden B (2007) Observations: surface and atmospheric climate change. IPCC, Changement Climatique, pp 235–336Google Scholar
  24. Larignon P, France I (2005) Le point sur les maladies de deperissement de la vigne. Journées Techniques Nationales Fruits et Légumes et Viticulture Biologiques, GAB 21:1–104Google Scholar
  25. Mézière D, Gary C, Barbier J, Bernos L, Clément C, Constant N, Delière L, Forget D, Grosman J, Molot B, Rio P, et al. (2009) ECOPHYTO R&D. Vers des systèmes de cultures économes en produits phytosanitaires. Volet 1: Analyse comparative de différents systèmes en viticulture. vol Tome III, INRA edn. MEEDAT - MAP - INRA, ParisGoogle Scholar
  26. Ministère de l’Environnement, de l’Energie et de la Mer (2015). Le ministère s’engage pour limiter l’usage des pesticides; le plan Ecophyto 2. Daté du 10 juin 2015 (mis à jour le 21 avril 2016) http://www.developpement-durable.gouv.fr/Consultation-publique-du-projet-de.html. Consulté le 21/07/2016
  27. Neethling E, Petitjean T, Quénol H, Barbeau G (2017) Assessing local climate vulnerability and winegrowers’ adaptive processes in the context of climate change. Mitig Adapt Strat Glob Chang 22(5):777–803CrossRefGoogle Scholar
  28. Nemecek T, Shcnetzer J (2011) Direct field emissions and elementary flows in LCIs of agricultural production systems. Updating of agricultural LCIs for EcoInvent data Ver 3:1–34Google Scholar
  29. Nemecek T, Heil A, Huguenin O, Meier S, Erzinger S, Blaser S, Dux D, Zimmermann A (2007) Life cycle inventories of agricultural production systems. Final report ecoinvent, Swiss Centre for Life Cycle Inventories, Dubendorf, vol 2, No 15Google Scholar
  30. Neto B, Dias AC, Machado M (2013) Life cycle assessment of the supply chain of a Portuguese wine: from viticulture to distribution. Int J Life Cycle Assess 18(3):590–602CrossRefGoogle Scholar
  31. Renaud-Gentié C, Burgos S, Benoît M (2014a) Choosing the most representative technical management routes within diverse management practices: application to vineyards in the Loire Valley for environmental and quality assessment. Eur J Agron 56:19–36CrossRefGoogle Scholar
  32. Renaud-Gentié C, Renaud C, Beauchet S and Jourjon F (2014b) Effet du millésime sur les performances environnementales d'un itinéraire technique viticole évaluées par Analyse du Cycle de Vie (ACV). In 37th OIV Congress, 9–14 novembre 2014. Mendoza, ArgentineGoogle Scholar
  33. Renaud-Gentié C, Dijkman T, Bjørn A, Birkved M (2015) Pesticide emission modelling and freshwater ecotoxicity assessment for grapevine LCA: adaptation of PestLCI 2.0 to viticulture. Int J life Cycle Assess 20(11):1528–1543CrossRefGoogle Scholar
  34. Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14(2):32CrossRefGoogle Scholar
  35. Rugani B, Vázquez-Rowe I, Benedetto G, Benetto E (2013) A comprehensive review of carbon footprint analysis as an extended environmental indicator in the wine sector. J Clean Prod 54:61–77CrossRefGoogle Scholar
  36. Sébillotte M (1974) Agronomie et agriculture, essai d'analyse des tâches de l'agronome. Cahiers de l'ORSTOM, série Biologie (24):3–25Google Scholar
  37. Soubeyroux J-M, Neppel L, Veysseire J-M, Tramblay Y, Carreau J, Gouget V (2015) Evolution des précipitations extrêmes en France en contexte de changement climatique. La Houille Blanche 1:27–33CrossRefGoogle Scholar
  38. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, De Vries W, de Wit CA, Folke C (2015) Planetary boundaries: guiding human development on a changing planet. Science 347(6223):1259855CrossRefGoogle Scholar
  39. Vázquez-Rowe I, Villanueva-Rey P, Moreira MT, Feijoo G (2012) Environmental analysis of Ribeiro wine from a timeline perspective: harvest year matters when reporting environmental impacts. J Environ Manag 98:73–83CrossRefGoogle Scholar
  40. Vázquez-Rowe I, Rugani B, Benetto E (2013) Tapping carbon footprint variations in the European wine sector. J Clean Prod 43:146–155CrossRefGoogle Scholar
  41. Vázquez-Rowe I, Cáceres AL, Torres-García JR, Quispe I, Kahhat R (2017) Life cycle assessment of the production of pisco in Peru. J Clean Prod 142:4369–4383CrossRefGoogle Scholar
  42. Villanueva-Rey P, Vázquez-Rowe I, Moreira MT, Feijoo G (2014) Comparative life cycle assessment in the wine sector: biodynamic vs. conventional viticulture activities in NW Spain. J Clean Prod 65:330–341CrossRefGoogle Scholar
  43. Yamada O, Bouneb F, Chavane L, Chion B, Dupupet J-L, Fournier J, Grimbuhler S, Nougadere A, Vigouroux-Villard A, Dubus I (2009) Les bases de données de propriétés des pesticides. Mieux connaître les usages des pesticides pour mieux comprendre les expositions Afsset, 11–12 Mars 2009 1–17. https://docplayer.fr/5165508-Les-bases-de-donnees-de-proprietes-des-pesticides.html. Accessed 10 May 2018

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sandra Beauchet
    • 1
    • 2
    • 3
    Email author
  • Anthony Rouault
    • 1
    • 2
  • Marie Thiollet-Scholtus
    • 4
  • Marguerite Renouf
    • 1
    • 5
  • Frédérique Jourjon
    • 1
  • Christel Renaud-Gentié
    • 1
    Email author
  1. 1.USC 1422 GRAPPE, Univ. Bretagne Loire, Ecole Supérieure d’Agricultures (ESA)-INRA, SFR 4207 QUASAVAngersFrance
  2. 2.ADEME, SAFAngersFrance
  3. 3.Now with IFP Energies nouvellesRueil-MalmaisonFrance
  4. 4.INRA - SAD - UR-0055-ASTERColmarFrance
  5. 5.School of Chemical EngineeringThe University of QueenslandBrisbaneAustralia

Personalised recommendations