Applying water scarcity footprint methodologies to milk production in Finland

  • Kirsi UsvaEmail author
  • Eetu Virtanen
  • Helena Hyvärinen
  • Jouni Nousiainen
  • Taija Sinkko
  • Sirpa Kurppa



Food production without consuming scarce local freshwater resources in an unsustainable way needs to be ensured. A robust method to assess water scarcity impacts is needed, not only for areas suffering from water scarcity but also in circumstances without water scarcity. This study provides basic knowledge about the current water scarcity footprint methodologies applied to rain-fed agriculture, with Finnish milk production as a case study.


A typical Finnish “cradle-to-dairy” milk production system was studied. An improved allocation method is suggested taking into account that a lactating cow consumes more drinking water due to milk production. Impact assessment methodologies, including midpoint impact indicators of water deprivation and water scarcity, and the endpoint impact indicators on human health, ecosystems and resources, were applied and evaluated.

Results and discussion

Finnish milk is associated with quite low consumptive water use, amounting to just 6.3 l per litre of packaged skimmed milk according to the suggested allocation method. The stress-weighted water footprint was 4.3 H2Oeq, and the water scarcity impact came to 12.2 leq per litre of Finnish milk. The comparisons between this study and case studies in the literature showed that the water scarcity impact results calculated with the AWARE method are well reasoned, and that mass flows from regions with high water scarcity cause higher water scarcity impact.


We conclude that the water scarcity footprint of Finnish milk in all the studied impact categories is relatively low. The AWARE method for water scarcity footprint assessment seems to be particularly applicable for Finland and is able to identify the critical hotspots of production chains.


Dairy farms Environmental impact Food products LCA Life cycle assessment Water availability Water footprint Water in LCA 



We would like to thank Stephen Pfister, Marlies Zonderland-Thomassen and Anne-Marie Boulay for their assistance in interpreting and applying their methods and results.

This work was supported by MTT Agrifood Research Finland.


  1. Allan JA (1993) Fortunately, there are substitutes for water otherwise our hydro-political futures would be impossible. Proceedings of the Conference on Priorities for Water Resources Allocation and Management. Overseas Development Administration ODA, pp 13–26Google Scholar
  2. Allan JA (1997) “Virtual water”: a long term solution for water short middle eastern economies? British Association Festival of Science, Water and Development Session – TUE.51, 14.45, University of Leeds, 9 September 1997Google Scholar
  3. Boulay A-M, Hoekstra AY, Vionnet S (2013) Complementarities of water-focused life cycle assessment and water footprint assessment. Environ Sci Technol 47(21):11926–11927CrossRefGoogle Scholar
  4. Boulay A-M, Bare J, De Camillis C, Döll P, Gassert F, Gerten D, Margni M et al (2015) Consensus building on the development of a stress-based indicator for lca-based impact assessment of water consumption: outcome of the expert workshops. Int J Life Cycle Assess 20:577–583CrossRefGoogle Scholar
  5. Boulay A-M, Bare J, Benini L, Berger M, Lathuillière MJ, Manzardo A, Margni M, Motoshita M, Núñez M, Pastor AV, Ridoutt B, Oki T, Worbe S, Pfister S (2018) The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int J Life Cycle Assess 23:368–378CrossRefGoogle Scholar
  6. Castle ME, Thomas TP (1970) The water intake of British Friesian cows on ration containing various forages. Anim Prod 20:181–189CrossRefGoogle Scholar
  7. Chapagain AK, Hoekstra AY, Savenije HHG, Gautam R (2006) The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecol Econ 60(1):186–203CrossRefGoogle Scholar
  8. Cote CM, Moran CJ, Cummings J, Ringwood K (2009) Developing a water accounting framework for the Australian minerals industry. Trans Inst Min Metall Sect A 118(3):162–176Google Scholar
  9. De Boer IJM, Hoving IE, Vellinga TV, Van de Ven GWJ, Leffelaar PA, Gerber PJ (2013) Assessing environmental impacts associated with freshwater consumption along the life cycle of animal products: the case of Dutch milk production in Noord-Brabant. Int J Life Cycle Assess 18:193–203CrossRefGoogle Scholar
  10. Edström M, Pettersson O, Nilsson L, Hörndahl T (2005) Jordbrukssektorns energianvändning. JTI-rapport. Lantbruk & Industri 342. JTI – Institutet för jordbruks- och miljöteknikGoogle Scholar
  11. EEA (2003) Europe’s water: an indicator-based assessment summary. Available at:
  12. ETL (2017) Finnish Food and Drink Industries’ Federation / statistics.
  13. FAO (2013) AQUASTAT database. Food and Agriculture Organization of the United NationsGoogle Scholar
  14. Feitz AJ, Lundie S, Dennien G, Morian M, Jones M (2007) Generation of an industry-specific physico-chemical allocation matrix, application in the dairy industry and implications for systems analysis. Int J Life Cycle Assess 12(2):109–117CrossRefGoogle Scholar
  15. Finnish Water Utilities Association (2012) Välttämätön vesi. Available at:
  16. Goedkoop M, Spriensma R (2001) The Eco-Indicator 99: a damage oriented method for life cycle impact assessment: methodology report, Publikatiereeks produktenbeleid; Nr. 36A; Ministerie van Volkshiusvesting, Ruimtelijke Ordening en Milieubeheer: Den HaagGoogle Scholar
  17. Gyllenswärd M (2011) Mjölkavhämtningsrum - Vägledning för planering och utformning. Svensk MjölkGoogle Scholar
  18. Hoekstra AY, Chapagain AK (2007) The water footprints of Morocco and the Netherlands: global water use as a result of domestic consumption of agricultural commodities. Ecol Econ 64:143–151CrossRefGoogle Scholar
  19. Huang J, Xu C-C, Ridoutt BG, Liu J-L, Zhang H-L, Chen F, Yu L (2014) Water availability footprint of milk and milk products from large-scale dairy production system in Northeast China. J Clean Prod 79:91–97CrossRefGoogle Scholar
  20. IDF (2010) A common carbon footprint approach for dairy. The IDF guide to standard lifecycle assessment methodology for the dairy sector. Bulletin of the International Dairy Federation 445/2010Google Scholar
  21. IDF (2015) A common carbon footprint approach for the dairy sector. The IDF guide to standard lifecycle assessment methodology. Bulletin of the International Dairy Federation 479/2015Google Scholar
  22. IDF (2017) The IDF guide to water footprint methodology for the dairy sector. Bulletin of the International Dairy Federation 486/2017Google Scholar
  23. ISO 14046:2014 (2014) Environmental management—water footprint—principles, requirements and guidelines. International Organisation for Standardisation, Geneva, SwitzerlandGoogle Scholar
  24. Jylhä P (2013) Autohakkurin seula-aukon vaikutus kokopuun haketuksen tuottavuuteen ja polttoaineen kulutukseen. Working Papers of the Finnish Forest Research Institute 272Google Scholar
  25. KTBL (2008) Wasserversorgnung in der Rinderhaltung Wasserbedarf - Technik - Management, 81, Kuratorium für Technik und Bauwersen in der Landwirtschaft e.V, DarmstadtGoogle Scholar
  26. Kuoppala K, Khalili H, Jaakkola S (2004) Water intake and drinking behaviour of dairy cows offered grass silage. In: Proceedings of the 38th international congress of the ISAE - International Society for Applied Ethology, Helsinki, Finland 2004 / Editors Laura Hänninen & Anna Valros. International Society for Applied Ethology. p 149Google Scholar
  27. Lindgaard Jensen M (2009) Power and Water Consumption with AMS. FarmTest 61. Danish Agricultural Advisory Service. Accessed 10 August 2018.
  28. Luke (2017) Feed tables and nutrient requirements. Natural Resources Institute Finland (Luke). [cited 12.5.2017]. Available at:
  29. Mäki M, Manninen E, Nyman K (2005) Maitotilan pesuopas. MTTGoogle Scholar
  30. Mälkki H, Virtanen Y (2003) Selected emissions and efficiencies of energy systems based on logging and sawmill residues. Biomass Bioenergy 24(4–5):321–327CrossRefGoogle Scholar
  31. McDonald P, Edwards RA, Greenhalgh JFD (1988) Animal nutrition, vol 19, 4th edn. Longman, New York, p 523Google Scholar
  32. Mekonnen MM, Hoekstra AY (2011) National water footprint accounts: the green, blue and grey water footprint of production and consumption, Value of Water Research Report Series No. 50. UNESCO-IHE, DelftGoogle Scholar
  33. Mikkola H, Ahokas J (2009) Energy ratios in Finnish agricultural production. AFSci 18:332–346CrossRefGoogle Scholar
  34. MMM (2012) Decree of the Finnish Ministry of Agriculture and Forestry 32/2012Google Scholar
  35. Murphy E, de Boer IJM, van Middelaar CE, Holden NM, Shalloo L, Curran TP, Upton J (2017) Predicting freshwater demand on Irish dairy farms using farm data. J Clean Prod 140:547–555CrossRefGoogle Scholar
  36. Northey S, Haque N, Mudd G (2013) Using sustainability reporting to assess the environmental footprint of copper mining. J Clean Prod 40:118–128CrossRefGoogle Scholar
  37. Nousiainen J, Tuori M, Turtola E, Huhtanen P (2011) Dairy farm nutrient management model. 1. Model description and validation. Agric Syst 104:371–382CrossRefGoogle Scholar
  38. Pajula H, Järvenpää L (eds) (2007) Maankuivatuksen ja kastelun suunnittelu: työryhmän mietintö. Suomen ympäristökeskuksen raportteja 23/2007. Suomen ympäristökeskus, HelsinkiGoogle Scholar
  39. Pajula H, Triipponen J (eds) (2003) Selvitys Suomen kastelutilanteesta: esimerkkialueena Varsinais-Suomi. Suomen ympäristö 629, luonto ja luonnonvarat Suomen ympäristökeskus, HelsinkiGoogle Scholar
  40. Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43:4098–4104CrossRefGoogle Scholar
  41. Posio M (2010) Kotieläintilojen energiankulutus. (Energy usage of domestic farms). M.Sc. Thesis. Faculty of Agriculture and Forestry. Department of Agricultural SciencesGoogle Scholar
  42. ProAgria (2010) The Finnish dairy herd recording system. Association of ProAgria CentresGoogle Scholar
  43. ProAgria (2012) The Finnish dairy herd recording system. Association of ProAgria CentresGoogle Scholar
  44. Ramos S, Ridoutt BG, Sanguansri P, Zufia J (2016) Evaluating the suitability of three water scarcity footprint methods: case study for the Spanish dairy industry. Proceedings 10th International Conference on Life Cycle Assessment of Food, Dublin, 19–21, Oct. 2016Google Scholar
  45. Rasmussen JB, Pedersen J (2004) Electricity and water consumption at milking. Farm Test 17. Danish Agricultural Advisory ServiceGoogle Scholar
  46. Ridoutt BG, Hodges D (2017) From ISO14046 to water footprint labelling: a case study of indicators applied to milk production in south-eastern Australia. Sci Total Environ 599–600:14–19CrossRefGoogle Scholar
  47. Ridoutt BG, Pfister S (2010) A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob Environ Change 20:113–120CrossRefGoogle Scholar
  48. Ridoutt BG, Williams SRO, Baud S, Fraval S, Marks N (2010) Short communication: the water footprint of dairy products: case study involving skim milk powder. J Dairy Sci 93:5114–5117CrossRefGoogle Scholar
  49. Shiklomanov IA, Rodda JC (eds) (2003) World water resources at the beginning of the twenty-first century. Cambridge University Press, CambridgeGoogle Scholar
  50. StoraEnso (2011) Case study on the water footprint of StoraEnso’s Skoghall mill. Report to the Alliance of Beverage Cartons and Environment (ACE) and WWF. Available at: Accessed 18 June 2013
  51. Sultana MN, Uddin MM, Ridoutt BG, Peters KJ (2014) Comparison of water use in global milk production for different typical farms. Agric Syst 129:9–21CrossRefGoogle Scholar
  52. Thoma G, Jolliet O, Wang Y (2013) A biophysical approach to allocation of life cycle environmental burdens for fluid milk supply chain analysis. Int Dairy J 31:S41–S49CrossRefGoogle Scholar
  53. Tike (2012) Agricultural census 2010 Part 2. Tike, Information Centre of the Ministry of Agriculture and Forestry. Accessed 10 August 2018.
  54. Uppenberg S, Zettenberg L, Åhman M (2001) Climate impact from peat utilisation in Sweden IVL B-1423. Stockholm, SwedenGoogle Scholar
  55. Usva K, Virtanen E, Hyvärinen H, Nousiainen J, Sinkko T, Kurppa S (2014) Water in an LCA framework: applying the methodology to milk production in Finland. In: 9th International Life Cycle Assessment for Foods Conference. Available at:
  56. Virtanen E (2015) Water footprint of Finnish milk production. Pro gradu. University of HelsinkiGoogle Scholar
  57. Zonderland-Thomassen MA, Ledgard SF (2012) Water footprinting - A comparison of methods using New Zealand dairy farming as a case study. Agric Syst 110:30–40CrossRefGoogle Scholar
  58. Zubarevich NV (2013) Regional Development: In Search of Sustainability. In: UNDP National Human Development Report for the Russian Federation 2013 Sustainable Development: Rio Challenges. Table 7.2. Available at:

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Natural Resources Institute Finland (Luke)JokioinenFinland
  2. 2.Soilfood ltdHelsinkiFinland

Personalised recommendations