LCA capability roadmap—product system model description and revision

  • Brandon Kuczenski
  • Antonino Marvuglia
  • Miguel F. Astudillo
  • Wesley W. Ingwersen
  • M. Barclay Satterfield
  • David P. Evers
  • Christoph Koffler
  • Tomás Navarrete
  • Ben Amor
  • Lise Laurin
LETTER TO THE EDITOR

Abstract

Purpose

Life cycle assessment (LCA) practitioners face many challenges in their efforts to describe, share, review, and revise their product system models, and to reproduce the models and results of others. Current life cycle inventory modeling techniques have weaknesses in the areas of describing model structure, documenting the use of proxy or non-ideal data, specifying allocation, and including modeler’s observations and assumptions—all affecting how the study is interpreted and limiting the reuse of models. Moreover, LCA software systems manage modeling information in different and sometimes non-compatible ways. Practitioners must also deal with licensing, privacy/confidentiality of data, and other issues around data access which impact how a model can be shared.

Methods

This letter was prepared by a working group of the North American Life Cycle Assessment Advisory Group to support the UNEP-SETAC Life Cycle Initiative’s Flagship Activity on Data, Methods, and Product Sustainability Information. The aim of the working group is to define a roadmap of the technical advances needed to achieve easier LCA model sharing and improve replicability of LCA results among different users in a way that is independent of the LCA software used to compute the results and does not infringe on any licensing restrictions or confidentiality requirements. This is intended to be a consensus document providing the state of the art in this area, with milestones for research and implementation needed to resolve current issues.

Results and Conclusions

The roadmap identifies fifteen milestones in three areas: “describing model contents,” “describing model structure,” and “collaborative use of models.” The milestones should support researchers and software developers in advancing practitioners’ abilities to share and review product system models.

Keywords

Life cycle inventory Product system model Critical review Capability roadmap 

Notes

Acknowledgements

The authors would like to acknowledge the contributions from the participants of the workshop in the 2016 SETAC North America Meeting and the support of SETAC. We greatly appreciate the community members who provided anonymous survey feedback. Working group members included Ben Mourad Amor (University of Sherbrooke), Miguel Astudillo (University of Sherbrooke), Bill Bernstein (NIST), Paula Bernstein (PRe Sustainability), Marcos Esterman (Rochester Institute of Technology), David Evers (Hexion), Karl Haapala (Oregon State University), Troy Hawkins (Eastern Research Group), Wesley Ingwersen (US EPA), Christoph Koffler (thinkstep), Brandon Kuczenski (University of California, Santa Barbara), Lise Laurin (EarthShift Global), Antonino Marvuglia (Luxembourg Institute of Science and Technology), David Meyer (US EPA), KC Morris (NIST), Christopher Mutel (Paul Scherrer Institut), Tomas Navarrete (Luxembourg Institute of Science and Technology), Massimo Pizzol (Aalborg University), Devarajan Ramanujan (Massachusetts Institute of Technology), and Barclay Satterfield (Eastman Chemical).

Disclaimer

The research presented was not performed or funded by EPA and was not subject to EPA’s quality system requirements. The views expressed in this article are those of the author(s) and do not necessarily represent the views or the policies of the U.S. Environmental Protection Agency.

Supplementary material

11367_2018_1446_MOESM1_ESM.docx (155 kb)
ESM 1 (DOCX 155 kb)

References

  1. Buckheit J, Donoho D (1995) WaveLab and reproducible research. In: A. A, G O (eds) Wavelets and statistics. Springer, New York, pp 55–81Google Scholar
  2. Canals LMI, Azapagic A, Doka G et al (2011) Approaches for addressing life cycle assessment data gaps for bio-based products. J Ind Ecol 15(5):707–725.  https://doi.org/10.1111/j.1530-9290.2011.00369.x CrossRefGoogle Scholar
  3. Cheung CW, Berger M, Finkbeiner M (2018) Comparative life cycle assessment of re-use and replacement for video projectors. Int J Life Cycle Assess 23(1):82–94.  https://doi.org/10.1007/s11367-017-1301-3 CrossRefGoogle Scholar
  4. Clift R, Frischknecht R, Huppes G et al (1998) Towards a coherent approach to life cycle inventory analysis. SETAC Europe, BrusselsGoogle Scholar
  5. Cooper JS, Noon M, Kahn E (2012) Parameterization in life cycle assessment inventory data: review of current use and the representation of uncertainty. Int J Life Cycle Assess 17(6):689–695.  https://doi.org/10.1007/s11367-012-0411-1 CrossRefGoogle Scholar
  6. Edelen A, Ingwersen WW (2017) The creation, management, and use of data quality information for life cycle assessment. Int J Life Cycle Assess.  https://doi.org/10.1007/s11367-017-1348-1
  7. Edelen A, Ingwersen WW, Rodríguez C, Alvarenga RAF, de Almeida AR, Wernet G (2017) Critical review of elementary flows in LCA data. Int J Life Cycle Assess.  https://doi.org/10.1007/s11367-017-1354-3
  8. UN Environment (2017) The global LCA data access network. http://web.unep.org/resourceefficiency/what-we-do/assessment/life-cycle-thinking/global-lca-data-access-network. Accessed 22 Dec 2017
  9. Fet AM, Skaar C (2006) Eco-labeling, product category rules and certification procedures based on ISO 14025 requirements. Int J Life Cycle Assess 11(1):49–54.  https://doi.org/10.1065/lca2006.01.237 CrossRefGoogle Scholar
  10. Fomel S, Claerbout JF (2009) Reproducible research. Comput Sci Eng 11(1):5–7.  https://doi.org/10.1109/MCSE.2009.14 CrossRefGoogle Scholar
  11. Heath GA, Mann MK (2012) Background and reflections on the Life Cycle Assessment Harmonization Project. J Ind Ecol 16:8–11CrossRefGoogle Scholar
  12. Heath GA, O’Donoughue P, Arent DJ, Bazilian M (2014) Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation. Proc Natl Acad Sci U S A 111(31):E3167–E3176.  https://doi.org/10.1073/pnas.1309334111 CrossRefGoogle Scholar
  13. Heijungs R, Sun S (2002) The computational structure of life cycle assessment. Int J Life Cycle Assess 7(5):314–314.  https://doi.org/10.1007/BF02978899 CrossRefGoogle Scholar
  14. Herrmann IT, Moltesen A (2015) Does it matter which life cycle assessment (LCA) tool you choose?—a comparative assessment of SimaPro and GaBi. J Clean Prod 86:163–169.  https://doi.org/10.1016/j.jclepro.2014.08.004 CrossRefGoogle Scholar
  15. Hetherington AC, Borrion AL, Griffiths OG, McManus MC (2014) Use of LCA as a development tool within early research: challenges and issues across different sectors. Int J Life Cycle Assess 19(1):130–143.  https://doi.org/10.1007/s11367-013-0627-8 CrossRefGoogle Scholar
  16. Ingwersen WW, Subramanian V (eds) (2013) Guidance for product category rule development. In: Prod. Categ. Rule Guid. Dev. Initiat. version 1.0. http://www.pcrguidance.org/. Accessed 20 Dec 2017
  17. Ingwersen WW, Hawkins TR, Transue TR, Meyer DE, Moore G, Kahn E, Arbuckle P, Paulsen H, Norris GA (2015) A new data architecture for advancing life cycle assessment. Int J Life Cycle Assess 20(4):520–526.  https://doi.org/10.1007/s11367-015-0850-6 CrossRefGoogle Scholar
  18. ISO (2002) ISO/TS 14048:2002 - Environmental management—life cycle assessment—data documentation formatGoogle Scholar
  19. ISO (2006) Environmental management—life cycle assessment—requirements and guidelines (ISO 14044:2006)Google Scholar
  20. Kuczenski B, Sahin C, El Abbadi A (2017) Privacy-preserving aggregation in life cycle assessment. Environ Syst Decis 37(1):13–21.  https://doi.org/10.1007/s10669-016-9620-7 CrossRefGoogle Scholar
  21. Mesirov JP (2010) Accessible reproducible research. Science 327(5964):415–416.  https://doi.org/10.1126/science.1179653 CrossRefGoogle Scholar
  22. Miller SA, Billington SL, Lepech MD (2016) Influence of carbon feedstock on potentially net beneficial environmental impacts of bio-based composites. J Clean Prod 132:266–278.  https://doi.org/10.1016/j.jclepro.2015.11.047 CrossRefGoogle Scholar
  23. Modahl IS, Askham C, Lyng KA, Skjerve-Nielssen C, Nereng G (2013) Comparison of two versions of an EPD, using generic and specific data for the foreground system, and some methodological implications. Int J Life Cycle Assess 18(1):241–251.  https://doi.org/10.1007/s11367-012-0449-0 CrossRefGoogle Scholar
  24. Muench S, Guenther E (2013) A systematic review of bioenergy life cycle assessments. Appl Energy 112:257–273.  https://doi.org/10.1016/j.apenergy.2013.06.001 CrossRefGoogle Scholar
  25. Mukherjee A, Dylla H (2017) Challenges to using environmental product declarations in communicating life-cycle assessment results. J Transp Res Rec 2639:84–92.  https://doi.org/10.3141/2639-11 CrossRefGoogle Scholar
  26. Mutel CL (2017) Ocelot. In: Open source Link. Framew. life cycle Assess. https://osf.io/apg8j/. Accessed 20 Dec 2017
  27. Price L, Kendall A (2012) Wind power as a case study: improving life cycle assessment reporting to better enable meta-analyses. J Ind Ecol 16:S22–S27.  https://doi.org/10.1111/j.1530-9290.2011.00458.x CrossRefGoogle Scholar
  28. Rydberg T, Palsson A-C (2009) Towards a Nordic guideline for nomenclature and data exchange format for life cycle assessment—NorDEX. Technical Report U3156. Swedish Environmental Research Institute (IVL).Google Scholar
  29. Speck R, Selke S, Auras R, Fitzsimmons J (2016) Life cycle assessment software: selection can impact results. J Ind Ecol 20(1):18–28.  https://doi.org/10.1111/jiec.12245 CrossRefGoogle Scholar
  30. Steubing B, Mutel C, Suter F, Hellweg S (2015) Streamlining scenario analysis and optimization of key choices in value chains using a modular LCA approach. Int J Life Cycle Assess 21:510–522CrossRefGoogle Scholar
  31. Subramanian V, Ingwersen W, Hensler C, Collie H (2012) Product category rules comparing product category rules from different programs: learned outcomes towards global alignment. Int J. Life Cycle Assess 17:892–903.  https://doi.org/10.1007/s11367-012-0419-64
  32. Vandepaer L, Gibon T (2017) The integration of energy scenarios into LCA: LCM2017 Conference Workshop, Luxembourg, September 5, 2017. Int J Life Cycle Assess.  https://doi.org/10.1007/s11367-017-1435-3
  33. Verones F, Bare J, Bulle C, Frischknecht R, Hauschild M, Hellweg S, Henderson A, Jolliet O, Laurent A, Liao X, Lindner JP, Maia de Souza D, Michelsen O, Patouillard L, Pfister S, Posthuma L, Prado V, Ridoutt B, Rosenbaum RK, Sala S, Ugaya C, Vieira M, Fantke P (2017) LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. J Clean Prod 161:957–967.  https://doi.org/10.1016/j.jclepro.2017.05.206 CrossRefGoogle Scholar
  34. Weidema BP (2000) Avoiding co-product allocation in life-cycle assessment. J Ind Ecol 4(3):11–33.  https://doi.org/10.1162/108819800300106366 CrossRefGoogle Scholar
  35. Wernet G, Bauer C, Steubing B et al (2015) The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess 3:1280–1230Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Brandon Kuczenski
    • 1
  • Antonino Marvuglia
    • 2
  • Miguel F. Astudillo
    • 3
  • Wesley W. Ingwersen
    • 4
  • M. Barclay Satterfield
    • 5
  • David P. Evers
    • 6
  • Christoph Koffler
    • 7
  • Tomás Navarrete
    • 2
  • Ben Amor
    • 3
  • Lise Laurin
    • 8
  1. 1.University of California, Santa BarbaraSanta BarbaraUSA
  2. 2.Luxembourg Institute of Science and Technology (LIST)Esch-sur-AlzetteLuxembourg
  3. 3.Interdisciplinary Research Laboratory on Sustainable Engineering and Ecodesign (LIRIDE)University of SherbrookeSherbrookeCanada
  4. 4.National Risk Management Research Library, Office of Research and DevelopmentUS Environmental Protection AgencyCincinnatiUSA
  5. 5.Eastman Chemical CompanyRaleighUSA
  6. 6.Hexion Inc.ColumbusUSA
  7. 7.thinkstep Inc.BostonUSA
  8. 8.EarthShift GlobalKitteryUSA

Personalised recommendations