The International Journal of Life Cycle Assessment

, Volume 23, Issue 11, pp 2189–2207 | Cite as

Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use

  • Olivier Jolliet
  • Assumpció Antón
  • Anne-Marie Boulay
  • Francesco Cherubini
  • Peter Fantke
  • Annie Levasseur
  • Thomas E. McKone
  • Ottar Michelsen
  • Llorenç Milà i Canals
  • Masaharu Motoshita
  • Stephan Pfister
  • Francesca Verones
  • Bruce Vigon
  • Rolf Frischknecht



Guidance is needed on best-suited indicators to quantify and monitor the man-made impacts on human health, biodiversity and resources. Therefore, the UNEP-SETAC Life Cycle Initiative initiated a global consensus process to agree on an updated overall life cycle impact assessment (LCIA) framework and to recommend a non-comprehensive list of environmental indicators and LCIA characterization factors for (1) climate change, (2) fine particulate matter impacts on human health, (3) water consumption impacts (both scarcity and human health) and 4) land use impacts on biodiversity.


The consensus building process involved more than 100 world-leading scientists in task forces via multiple workshops. Results were consolidated during a 1-week Pellston Workshop™ in January 2016 leading to the following recommendations.

Results and discussion

LCIA framework: The updated LCIA framework now distinguishes between intrinsic, instrumental and cultural values, with disability-adjusted life years (DALY) to characterize damages on human health and with measures of vulnerability included to assess biodiversity loss. Climate change impacts: Two complementary climate change impact categories are recommended: (a) The global warming potential 100 years (GWP 100) represents shorter term impacts associated with rate of change and adaptation capacity, and (b) the global temperature change potential 100 years (GTP 100) characterizes the century-scale long term impacts, both including climate-carbon cycle feedbacks for all climate forcers. Fine particulate matter (PM2.5) health impacts: Recommended characterization factors (CFs) for primary and secondary (interim) PM2.5 are established, distinguishing between indoor, urban and rural archetypes. Water consumption impacts: CFs are recommended, preferably on monthly and watershed levels, for two categories: (a) The water scarcity indicator “AWARE” characterizes the potential to deprive human and ecosystems users and quantifies the relative Available WAter REmaining per area once the demand of humans and aquatic ecosystems has been met, and (b) the impact of water consumption on human health assesses the DALYs from malnutrition caused by lack of water for irrigated food production. Land use impacts: CFs representing global potential species loss from land use are proposed as interim recommendation suitable to assess biodiversity loss due to land use and land use change in LCA hotspot analyses.


The recommended environmental indicators may be used to support the UN Sustainable Development Goals in order to quantify and monitor progress towards sustainable production and consumption. These indicators will be periodically updated, establishing a process for their stewardship.


Climate change Fine particulate matter Human health Land use LCIA framework Water consumption Water scarcity 



The authors acknowledge the UNEP/SETAC Life Cycle Initiative and its sponsors for funding this activity and the contributions from the additional participants to the Pellston Workshop™ (PW) and to the LCIA guidance Task Forces (TF).

Crosscutting issues and framework: (PW) Stefanie Hellweg, Andrew D. Henderson, Alexis Laurent, Brad Ridoutt, Cassia Ugaya; (TF) Jane Bare, Alya Bolowich, Mattia Damiani, Jo Dewulf, Chris Koffler, Jan Paul Lindner, Xun Liao, Danielle Maia de Souza, Chris Mutel, Laure Patouillard, Massimo Pizzol, Leo Posthuma, Tommie Ponsioen, Valentina Prado, Ralph Rosenbaum, Serenella Sala, Thomas Sonderegger, Franziska Stössel, Marisa Vieira, Bo Weidema, John S. Woods.

Climate change impacts: (PW) An de Schryver, Michael Hauschild, Yuki Kabe, Abdelhadi Sahnoune, Katsumasa Tanaka; (TF) Otávio Cavalett, Jan S. Fuglestvedt, Thomas Gasser, Mark A.J. Huijbregts, Daniel J.A. Johansson, Susanne V. Jørgensen, Marco Raugei, Andy Reisinger, Greg Schivley, Anders H. Strømman.

Fine particulate matter health impacts: (PW) Joshua Apte, John Evans, Natasha Hodas, Matti Jantunen; (TF) Deborah Bennett, Otto Hänninen, Jonathan Levy, Dingsheng Li, Paul J. Lioy, Miranda Loh, Detelin Markov, Julian Marshall, Philipp Preiss, Hyeong-Moo Shin, Joseph Spadaro, Katerina Stylianou, Marko Tainio, Jouni T. Tuomisto, Charles J. Weschler.

Water use impacts: (PW) Lorenzo Benini, Shabbir H. Gheewala, Maria Clea Brito de Figueiredo, Kevin Harding, Urs Schenker; (TF) Jane Bare, Markus Berger, Cécile Bulle, Michael J. Lathuillière, Alessandro Manzardo, Manuele Margni, Montserrat Núñez, Amandine Valerie Pastor, Taikan Oki, Sebastien Worbe.

Land use impacts on biodiversity: (PW) Christian Bauer, Camillo de Camillis, Ruth Freiermuth Knuchel, Tim Grant, Ottar Michelsen, Martha Stevenson; (TF) Béatrice Bellini, Sharon Brooks, Jasmina Burek, Abhishek Chaudhary, Carla Coelho, Michael Curran, Maria Cléa Brito de Figueirêdo, Danielle Maia de Souza, Pieter Elshout, Simone Fazio, Jan Paul Lindner, William Puttman, Eugenie Regan, Serenella Sala, Félix Teillard, Ricardo F. M. Teixeira, Greg Thoma, Beatriz Vidal-Legaz, Matt Walpole.

Supplementary material

11367_2018_1443_MOESM1_ESM.docx (47 kb)
ESM 1 (DOCX 46 kb)


  1. Allen MR, Fuglestvedt JS, Shine KP, Reisinger A, Pierrehumbert RT, Forster PM (2016) New use of global warming potentials to compare cumulative and short-lived climate pollutants. Nat Clim Chang 6(8):773–776CrossRefGoogle Scholar
  2. Antón A, Maia de Souza D, Teillard F, Milà i Canals L (2016) Addressing biodiversity and ecosystem services in life cycle assessment. Geneletti D (ed) Handbook on biodiversity and ecosystems services in impact assessment. Edward Elgar Publishing, ISBN: 978 1 78347 898 9, Chapter 7, pp 140–166Google Scholar
  3. Apte JS, Bombrun E, Marshall JD, Nazaroff WW (2012) Global intraurban intake fractions for primary air pollutants from vehicles and other distributed sources. Environ Sci Technol 46(6):3415–3423CrossRefGoogle Scholar
  4. Apte JS, Marshall JD, Cohen AJ, Brauer M (2015) Addressing global mortality from ambient PM2.5. Environ Sci Technol 49(13):8057–8066CrossRefGoogle Scholar
  5. Bayart JB, Bulle C, Deschênes L, Margni M, Pfister S, Vince F, Koehler A (2010) A framework for assessing off-stream freshwater use in LCA. Int J Life Cycle Assess 15(5):439–453CrossRefGoogle Scholar
  6. Bennett DH, McKone TE, Evans JS, Nazaroff WW, Margni MD, Jolliet O, Smith KR, Bennett DH (2002) Defining intake fraction. Environ Sci Technol 36:207A–211ACrossRefGoogle Scholar
  7. Boucher O, Reddy M (2008) Climate trade-off between black carbon and carbon dioxide emissions. Energy Policy 36:193–200CrossRefGoogle Scholar
  8. Boulay A-M, Bulle C, Bayart JB, Deschênes L, Manuele M (2011) Regional characterization of freshwater use in LCA: modeling direct impacts on human health. Environ Sci Technol 45(20):8948–8957CrossRefGoogle Scholar
  9. Boulay AM, Motoshita M, Pfister S, Bayart JB, Franceschini H, Muñoz I, Bulle C, Margni M (2015a) Water use impact assessment methods (part a): methodological and quantitative comparison of scarcity and human health impacts models. Int J Life Cycle Assess 20(1):139–160CrossRefGoogle Scholar
  10. Boulay AM, Bayart JB, Bulle C, Franceschini H, Motoshita M, Muñoz I, Pfister S, Margni M (2015b) Analysis of water use impact assessment methods (part b): applicability for water footprinting and decision making with a laundry case study. Int J Life Cycle Assess 20(6):1–15CrossRefGoogle Scholar
  11. Boulay AM, Bare J, De Camillis C, Döll P, Gassert F, Gerten D, Humbert S, Inaba A, Itsubo N, Lemoine Y, Margni M (2015c) Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: outcome of the expert workshops. Int J Life Cycle Assess 20(5):577–583CrossRefGoogle Scholar
  12. Boulay AM, Bare J, Benini L, Berge M, Lathuilliere M, Manzardo A, Margni M, Motoshita M, Núñez M, Oki T, Pastor A, Ridoutt B, Worbe S, Pfister S (2018) The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on Available WAter REmaining (AWARE). Int J Life Cycle Assess 23(2):368–378CrossRefGoogle Scholar
  13. Bulle C, Margni M, Kashef-Haghighi S, Boulay AM, Bourgault G, De Bruille V, Cao V, Fantke P, Hauschild M, Henderson A, Humbert S, Kounina A, Laurent A, Levasseur A, Liard G, Patouillard L, Rosenbaum R, Roy PO, Shaked S, Jolliet O (2018) IMPACT World+: a globally regionalized life cycle impact assessment method. Int J Life Cycle Assess (in review)Google Scholar
  14. Burnett RT, Pope CA 3rd, Ezzati M, Olives C, Lim SS, Mehta S, Shin HH, Singh G, Hubbell B, Brauer M, Anderson HR (2014) An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect 122(4):397–403Google Scholar
  15. Chaudhary A, Verones F, de Baan L, Hellweg S (2015) Quantifying land use impacts on biodiversity: combining species–area models and vulnerability indicators. Environ Sci Technol 49(16):9987–9995CrossRefGoogle Scholar
  16. Chaudhary A, Verones F, de Baan L, Pfister S, Hellweg S (2016) Chapter 11. Land stress: potential species loss from land use (global; PSLrg. In LC-Impact version 0.5. A spatially differentiated life cycle impact assessment report. access 29/11/2016
  17. Cherubini F, Fuglestvedt J, Gasser T, Reisinger A, Cavalett O, Huijbregts MAJ, Johansson DJA, Jørgensen SV, Raugei M, Schivley G, Strømman AH, Tanaka K, Levasseur A (2016) Bridging the gap between impact assessment methods and climate science. Environ Sci Pol 64:129–140CrossRefGoogle Scholar
  18. Chiarucci A, Araújo MB, Decocq G, Beierkuhnlei C, Fernández-Palacios JM (2010) The concept of potential natural vegetation: an epitaph? J Veg Sci 21(6):1172–1178CrossRefGoogle Scholar
  19. Coelho CRV, Michelsen O (2014) Land use impacts on biodiversity from kiwifruit production in New Zealand assessed with global and national datasets. Int J Life Cycle Assess 19(2):285–296CrossRefGoogle Scholar
  20. Curran M, Hellweg S, Beck J (2014) Is there any empirical support for biodiversity offset policy? Ecol Appl 24(4):617–632CrossRefGoogle Scholar
  21. Curran M, Maia de Souza D, Antón A, Teixeira R, Michelsen O, Vidal-Legaz B, Sala S, Milà i Canals L (2016) How well does LCA model land use impacts on biodiversity?—a comparison with approaches from ecology and conservation. Environ Sci Technol 50(6):2782–2795CrossRefGoogle Scholar
  22. de Baan L, Alkemade R, Koellner T (2013) Land use impacts on biodiversity in LCA: a global approach. Int J Life Cycle Assess 18(6):1216–1230CrossRefGoogle Scholar
  23. Fantke P, Jolliet O, Apte JS, Cohen AJ, Evans JS, Hänninen OO, Hurley F, Jantunen MJ, Jerrett M, Levy JI, Loh MM, Marshall JD, Miller BG, Preiss P, Spadaro JV, Tainio M, Tuomisto JT, Weschler CJ, McKone TE (2015) Health effects of fine particulate matter in life cycle impact assessment: conclusions from the Basel Guidance Workshop. Int J Life Cycle Assess 20:276–288CrossRefGoogle Scholar
  24. Fantke P, Jolliet O, Apte JS, Hodas N, Evans J, Weschler CJ, Stylianou KS, Jantunen M, McKone TE (2017) Characterizing aggregated exposure to primary particulate matter: recommended intake fractions for indoor and outdoor sources. Environ Sci Technol 51(16):9089–9100CrossRefGoogle Scholar
  25. Forouzanfar MH, Alexander L, Anderson HR et al (2015) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386(10010):2287–2323CrossRefGoogle Scholar
  26. Frischknecht R, Büsser Knöpfel S (2013) Swiss eco-factors 2013 according to the ecological scarcity method methodological fundamentals and their application in Switzerland Environmental studies no 1330 Federal Office for the Environment, Bern, retrieved from: http://www.bafuadminch/publikationen/publikation/01750/indexhtml?lang=en
  27. Frischknecht R, Jolliet O (eds) (2016) Global guidance for life cycle impact assessment indicators—volume 1. Publication of the UNEP/SETAC Life Cycle Initiative, Paris, DTI/2081/PA, ISBN: 978–92–807-3630-4, pp 159.
  28. Frischknecht R, Fantke P, Tschümperlin L, Niero M, Antón A, Bare J, Boulay A-M, Cherubini F, Hauschild MZ, Henderson A, Levasseur A, McKone TE, Michelsen O, Milà i Canals L, Pfister S, Ridoutt B, Rosenbaum RK, Verones F, Vigon B, Jolliet O (2016) Global guidance on environmental life cycle impact assessment indicators: progress and case study. Int J Life Cycle Assess 21(3):429–442CrossRefGoogle Scholar
  29. Hauschild M, Goedkoop M, Guinée J, Heijungs R, Huijbregts MAJ, Jolliet O, Margni M, De Schryver A (2011) Recommendations for life cycle impact assessment in the European context—based on existing environmental impact assessment models and factors European Commission—DG Joint Research Centre, JRC, Institute for Environment and Sustainability (IES), retrieved from: http://www.lctjrceceuropaeu/assessment/projects
  30. Hauschild M, Goedkoop M, Guinée J, Heijungs R, Huijbregts M, Jolliet O, Margni M, De Schryver A, Humbert S, Laurent A, Sala S, Pant R (2013) Identifying best existing practice for characterization modelling in life cycle impact assessment. Int J Life Cycle Assess 18(3):683–697CrossRefGoogle Scholar
  31. Hellweg S, Milà i Canals L (2014) Emerging approaches, challenges and opportunities in life cycle assessment. Science 344(6188):1109–1113CrossRefGoogle Scholar
  32. Hodas N, Loh M, Shin H-M, Li D, Bennett D, McKone TE, Jolliet O, Weschler CJ, Jantunen M, Lioy P, Fantke P (2016) Indoor inhalation intake fractions of fine particulate matter: review of influencing factors. Indoor Air 26:836–856CrossRefGoogle Scholar
  33. Huijbregts M (2014) A critical view on scientific consensus building in life cycle impact assessment. Int J Life Cycle Assess 19(3):477–479CrossRefGoogle Scholar
  34. Huijbregts MAJ, Verones F, Azevedo LB, Chaudhary A, Cosme N, Fantke P, Goedkoop M, Hauschild M, Laurent A, Mutel C, Pfister S, Ponsioen T, Steinmann Z, van Zelm R, Vieira M and Hellweg S (2014) LC-impact version 01. Radboud University Nijmegen, NTNU, International Institute for Applied Systems Analysis, ETH Zürich, DTU Management Engineering, Pré ConsultantsGoogle Scholar
  35. Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira M, Zijp M, Hollander A, van Zelm R (2017) ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess 22:138–147CrossRefGoogle Scholar
  36. Humbert S, Marshall JD, Shaked S, Spadaro JV, Nishioka Y, Preiss P, McKone TE, Hovarth A, Jolliet O (2011) Intake fraction for particulate matter: recommendations for life cycle impact assessment. Environ Sci Technol 45(11):4808–4816CrossRefGoogle Scholar
  37. Humbert S, Fantke P, Jolliet O (2015) Particulate matter formation. In: Hauschild M, MAJ H (eds) Life cycle impact assessment. Springer Press, Dordrecht, pp 97–113Google Scholar
  38. IPCC (2007) Climate change 2007: working group I: the physical science basis. Intergovernmental Panel on Climate Change, Cambridge 1007Google Scholar
  39. ISO (2014) International Organization for Standardization (ISO), Environmental management—water footprint—principles, requirements and guidelines. Geneva, Switzerland, International Organization for Standardization, ISOGoogle Scholar
  40. Itsubo N, Inaba A (2010) LIME2: environmental impact assessment methods for decision support JEMAI (in Japanese) ISBN 978–4–86240-055-0 C3051, retrieved from: http://www.bizjemaiorjp/pr/lca_bookshtml
  41. Jolliet O, Müller-Wenk R, Bare J, Brent A, Goedkoop M, Heijungs R, Itsubo N, Peña C, Pennington D, Potting J, Rebitzer G, Stewart M, Udo de Haes H, Weidema Bo P (2004) The LCIA midpoint-damage framework of the UNEP-SETAC Life Cycle Initiative. Int J Life Cycle Assess 12(1):394–404CrossRefGoogle Scholar
  42. Jolliet O, Frischknecht R, Bare J, Boulay A-M, Bulle C, Fantke P, Gheewalaf S, Hauschild M, Itsubo N, Margni M, McKone T, Milà i Canals L, Postuma L, Prado-Lopez V, Ridoutt B, Sonnemann G, Rosenbaum RK, Seager T, Struijs J, van Zelm R, Vigon B, Weisbrod A (2014) Global guidance on environmental life cycle impact assessment indicators: findings of the Glasgow scoping workshop. Int J Life Cycle Assess 19:962–967CrossRefGoogle Scholar
  43. Joos F, Roth R, Fuglestvedt JS, Peters GP, Enting IG, von Bloh W, Brovkin V, Burke EJ, Eby M, Edwards NR, Friedrich T, Frölicher TL, Halloran PR, Holden PB, Jones C, Kleinen T, Mackenzie F, Matsumoto K, Meinshausen M, Plattner G-K, Reising A, Segschneider J, Shaffer G, Steinacher M, Strassmann K, Tanaka K, Timmermann A, Weaver AJ (2013) Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos Chem Phys 13:2793–2825CrossRefGoogle Scholar
  44. Koellner T, de Baan L, Beck T, Brandão M, Civit B, Margni M, Milà i Canals L, Saad R, de Souza D, Müller-Wenk R (2013) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services. Int J Life Cycle Assess 18(6):1188–1202CrossRefGoogle Scholar
  45. Köhler A (2007) Water use in LCA: managing the planet’s freshwater resources. Int J Life Cycle Assess 13:451–455CrossRefGoogle Scholar
  46. Kounina A, Margni M, Bayart JB, Boulay AM, Berger M, Bulle C, Frischknecht R, Koehler A, Milà i Canals L, Motoshita M, Núñez M, Peters G, Pfister S, Ridoutt B, Zelm R, Verones F, Humbert S (2013) Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int J Life Cycle Assess 18(3):707–721CrossRefGoogle Scholar
  47. Kounina A, Margni M, Shaked S, Bulle C, Jolliet O (2014) Spatial analysis of toxic emissions in LCA: a sub-continental nested USEtox model with freshwater archetypes. Environ Int 69:67–89CrossRefGoogle Scholar
  48. Levasseur A, Cavalett O, Fuglestvedt JS, Gasser T, Johansson DJA, Jørgensen SV, Raugei M, Reisinger A, Schivley G, Størmman A, Tanaka K, Cherubini F (2016) Enhancing life cycle impact assessment from climate science: review of recent findings and recommendations for application to LCA. Ecol Indic 71:163–174CrossRefGoogle Scholar
  49. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Anderson HR, Andrews KG, Aryee M (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2224–2260CrossRefGoogle Scholar
  50. MEA (2005) Millennium ecosystem assessment. Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DCGoogle Scholar
  51. Milà i Canals L, Müller-Wenk R, Bauer C, Depestele J, Dubreuil A, Freiermuth-Knuchel R, Gaillard G, Michelsen O, Rydgren B (2007) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12(1):5–15CrossRefGoogle Scholar
  52. Motoshita M, Ono Y, Pfister S, Boulay AM, Berger M, Nansai K, Tahara K, Itsubo N, Inaba A (2014) Consistent characterisation factors at midpoint and endpoint relevant to agricultural water scarcity arising from freshwater consumption. Int J Life Cycle Assess.
  53. Müller Schmied H, Eisner S, Franz D, Wattenbach M, Portmann FT, Flörke M, Döll P (2014) Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrol Earth Sys Sci 18(9):3511–3538CrossRefGoogle Scholar
  54. Murray CJL (1994) Quantifying the burden of disease: the technical basis for disability-adjusted life years. Bul World Health Organ 72(3):429–445Google Scholar
  55. Murray CJ et al (2015) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386(10010):2287–2323CrossRefGoogle Scholar
  56. Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and Natural Radiative Forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, Cambridge University Press, United Kingdom and New York, NY, USAGoogle Scholar
  57. Pastor V, Ludwig F, Biemans H, Hoff H, Kabat P (2014) Accounting for environmental flow requirements in global water assessments. Hydrol Earth Sys Sci 10(12):14987–15032CrossRefGoogle Scholar
  58. Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43(11):4098–4104CrossRefGoogle Scholar
  59. Rosenbaum R, Bachmann T, Gold L, Huijbregts MJ, Jolliet O, Juraske R, Koehler A, Larsen H, MacLeod M, Margni M, McKone T, Payet J, Schuhmacher M, Meent D, Hauschild M (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532–546CrossRefGoogle Scholar
  60. Schmidt JH (2008) Development of LCIA characterisation factors for land use impacts on biodiversity. J Clean Prod 16(18):1929–1942CrossRefGoogle Scholar
  61. Shine K, Fuglestvedt J, Hailemariam K, Stuber N (2005) Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim Chang 68:281–302CrossRefGoogle Scholar
  62. Sonderegger T, Dewulf J, Drielsma J, Fantke P, Maia De Souza D, Pfister S, Stössel F, Verones F, Vieira M, Weidema B, Hellweg S (2017) Towards harmonizing natural resources as an area of protection in life cycle impact assessment. Int J Life Cycle Assess 22(12):1912–1927CrossRefGoogle Scholar
  63. Teixeira R, Maia de Souza D, Curran M, Antón A, Michelsen O, Milà i Canals L (2016) Towards consensus on land use impacts on biodiversity in LCA: UNEP/SETAC Life Cycle Initiative preliminary recommendations based on expert contributions. J Clean Prod 112(5):4283–4287CrossRefGoogle Scholar
  64. Udo de Haes HA, Finnveden G, Goedkoop M, Hauschild M, Hertwich E, Hofstetter P, Jolliet O, Klöpffer W, Krewitt W, Lindeijer E, Müller-Wenk R, Olsen S, Pennington D, Potting J, Steen B (2002) Life-cycle impact assessment: striving towards best practice. Society of Environmental Toxicology and Chemistry (SETAC), BrusselsGoogle Scholar
  65. United Nations (2015) Resolution adopted by the general assembly on 25 September 2015: transforming our world: the 2030 agenda for sustainable development. United Nations General Assembly, New YorkGoogle Scholar
  66. Verones F, Hellweg S, Azevedo LB, Chaudhary A, Cosme N, Fantke P, Goedkoop M, Hauschild MZ, Laurent A, Mutel CL, Pfister S, Ponsioen T, Steinmann Z, Van Zelm R, Vieira M, Huijbregts MAJ (2016) LC-IMPACT version 0.5—a spatially differentiated life cycle impact assessment approach. Last accessed 29 November, 2016, from
  67. Verones F, Bare J, Bulle C, Frischknecht R, Hauschild M, Hellweg S, Henderson A, Jolliet O, Laurent A, Liao X, Lindner JP, Maia de Souza D, Michelsen O, Patouillard L, Pfister S, Posthuma L, Prado V, Ridoutt B, Rosenbaum RK, Sala S, Ugaya C, Vieira M, Fantke P (2017) LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. J Clean Prod 161:957–967CrossRefGoogle Scholar
  68. Westh TB, Hauschild MZ, Birkved M, Jørgensen MS, Rosenbaum RK, Fantke P (2015) The USEtox story: a survey of model developer visions and user requirements. Int J Life Cycle Assess 20:299–310CrossRefGoogle Scholar
  69. Woods JS, Damiani M, Fantke P, Henderson AD, Johnston JM, Bare J, Sala S, Maia de Souza D, Pfister S, Posthuma L, Rosenbaum RK, Verones F (2017) Ecosystem quality in LCIA: status quo, harmonization, and suggestions for the way forward. Int J Life Cycle Assess. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Olivier Jolliet
    • 1
  • Assumpció Antón
    • 2
  • Anne-Marie Boulay
    • 3
    • 4
  • Francesco Cherubini
    • 5
  • Peter Fantke
    • 6
  • Annie Levasseur
    • 3
  • Thomas E. McKone
    • 7
  • Ottar Michelsen
    • 8
  • Llorenç Milà i Canals
    • 9
  • Masaharu Motoshita
    • 10
  • Stephan Pfister
    • 11
  • Francesca Verones
    • 5
  • Bruce Vigon
    • 12
  • Rolf Frischknecht
    • 13
  1. 1.Environmental Health Sciences, School of Public HealthUniversity of MichiganAnn ArborUSA
  2. 2.Institute for Food and Agricultural Research and TechnologyIRTABarcelonaSpain
  3. 3.Department of Chemical Engineering, Polytechnique MontrealCIRAIGMontrealCanada
  4. 4.LIRIDESherbrooke UniversitySherbrookeCanada
  5. 5.Industrial Ecology Programme, Department of Energy and Process EngineeringNorwegian University of Science and TechnologyTrondheimNorway
  6. 6.Department of Management Engineering, Quantitative Sustainability Assessment DivisionTechnical University of DenmarkKgs. LyngbyDenmark
  7. 7.School of Public HealthUniversity of CaliforniaBerkeleyUSA
  8. 8.NTNU SustainabilityNorwegian University of Science and TechnologyTrondheimNorway
  9. 9.Economy DivisionUnited Nations Environment ProgrammeParisFrance
  10. 10.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  11. 11.Swiss Federal Institute of TechnologyETHZZurichSwitzerland
  12. 12.SETACPensacolaUSA
  13. 13.treeze Ltd.UsterSwitzerland

Personalised recommendations