Advertisement

The International Journal of Life Cycle Assessment

, Volume 23, Issue 10, pp 1995–2006 | Cite as

Ecosystem quality in LCIA: status quo, harmonization, and suggestions for the way forward

  • John S. Woods
  • Mattia Damiani
  • Peter Fantke
  • Andrew D. Henderson
  • John M. Johnston
  • Jane Bare
  • Serenella Sala
  • Danielle Maia de Souza
  • Stephan Pfister
  • Leo Posthuma
  • Ralph K. Rosenbaum
  • Francesca Verones
LCIA OF IMPACTS ON HUMAN HEALTH AND ECOSYSTEMS

Abstract

Purpose

Life cycle impact assessment (LCIA) results are used to assess potential environmental impacts of different products and services. As part of the UNEP-SETAC life cycle initiative flagship project that aims to harmonize indicators of potential environmental impacts, we provide a consensus viewpoint and recommendations for future developments in LCIA related to the ecosystem quality area of protection (AoP). Through our recommendations, we aim to encourage LCIA developments that improve the usefulness and global acceptability of LCIA results.

Methods

We analyze current ecosystem quality metrics and provide recommendations to the LCIA research community for achieving further developments towards comparable and more ecologically relevant metrics addressing ecosystem quality.

Results and discussion

We recommend that LCIA development for ecosystem quality should tend towards species-richness-related metrics, with efforts made towards improved inclusion of ecosystem complexity. Impact indicators—which result from a range of modeling approaches that differ, for example, according to spatial and temporal scale, taxonomic coverage, and whether the indicator produces a relative or absolute measure of loss—should be framed to facilitate their final expression in a single, aggregated metric. This would also improve comparability with other LCIA damage-level indicators. Furthermore, to allow for a broader inclusion of ecosystem quality perspectives, the development of an additional indicator related to ecosystem function is recommended. Having two complementary metrics would give a broader coverage of ecosystem attributes while remaining simple enough to enable an intuitive interpretation of the results.

Conclusions

We call for the LCIA research community to make progress towards enabling harmonization of damage-level indicators within the ecosystem quality AoP and, further, to improve the ecological relevance of impact indicators.

Keywords

Biodiversity Damage-level Endpoint Functions Harmonization LCIA Species UNEP-SETAC 

Notes

Compliance with ethical standards

Disclaimer

This paper has been reviewed in accordance with Agency policy and approved for publication. The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

References

  1. Azevedo LB, van Zelm R, Elshout PMF, Hendriks AJ, Leuven RSEW, Struijs J, de Zwart D, Huijbregts MAJ (2013) Species richness-phosphorus relationships for lakes and streams worldwide. Glob Ecol Biogeogr 22(12):1304–1314.  https://doi.org/10.1111/geb.12080 CrossRefGoogle Scholar
  2. Azevedo LB, Van Zelm R, Hendriks AJ, Bobbink R, Huijbregts MAJ (2013) Global assessment of the effects of terrestrial acidification on plant species richness. Environ Pollut 174:10–15.  https://doi.org/10.1016/j.envpol.2012.11.001 CrossRefGoogle Scholar
  3. Brodie JF, Aslan CE, Rogers HS, Redford KH, Maron JL, Bronstein JL, Groves CR (2014) Secondary extinctions of biodiversity. Trends Ecol Evol 29(12):664–672.  https://doi.org/10.1016/j.tree.2014.09.012 CrossRefGoogle Scholar
  4. Brown LE, Milner AM (2012) Rapid loss of glacial ice reveals stream community assembly processes. Glob Chang Biol 18(7):2195–2204.  https://doi.org/10.1111/j.1365-2486.2012.02675.x CrossRefGoogle Scholar
  5. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486(7401):59–67.  https://doi.org/10.1038/nature11148 CrossRefGoogle Scholar
  6. CBD (1992) 'Convention on Biological Diversity'. https://www.cbd.int/convention/text/. Accessed 22 July 2015
  7. Chapin FS III et al (2000) Consequences of changing biodiversity. Nature 405(6783):234–242.  https://doi.org/10.1038/35012241 CrossRefGoogle Scholar
  8. Chaudhary A, Verones F, De Baan L, Hellweg S (2015) Quantifying land use impacts on biodiversity: combining species-area models and vulnerability indicators. Environ Sci Technol 49(16):9987–9995.  https://doi.org/10.1021/acs.est.5b02507 CrossRefGoogle Scholar
  9. Curran M, de Baan L, de Schryver AM, van Zelm R, Hellweg S, Koellner T, Sonnemann G, Huijbregts MAJ (2011) Toward meaningful end points of biodiversity in life cycle assessment. Environ Sci Technol 45(1):70–79.  https://doi.org/10.1021/es101444k CrossRefGoogle Scholar
  10. Curran M, Maia de Souza D, Antón A, Teixeira RFM, Michelsen O, Vidal-Legaz B, Sala S, Milà i Canals L (2016) How well does LCA model land use impacts on biodiversity?—a comparison with approaches from ecology and conservation. Environ Sci Technol 50(6):2782–2795.  https://doi.org/10.1021/acs.est.5b04681 CrossRefGoogle Scholar
  11. de Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JHC, Bardgett RD, Berg MP, Cipriotti P, Feld CK, Hering D, Martins da Silva P, Potts SG, Sandin L, Sousa JP, Storkey J, Wardle DA, Harrison PA (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19(10):2873–2893.  https://doi.org/10.1007/s10531-010-9850-9 CrossRefGoogle Scholar
  12. Díaz S, Purvis A, Cornelissen JHC, Mace GM, Donoghue MJ, Ewers RM, Jordano P, Pearse WD (2013) Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol Evol 3(9):2958–2975.  https://doi.org/10.1002/ece3.601 CrossRefGoogle Scholar
  13. Elshout PMF, Van Zelm R, Karuppiah R, Laurenzi IJ, Huijbregts MAJ (2014) A spatially explicit data-driven approach to assess the effect of agricultural land occupation on species groups. Int J Life Cycle Assess 19(4):758–769.  https://doi.org/10.1007/s11367-014-0701-x CrossRefGoogle Scholar
  14. Frischknecht R, Fantke P, Tschümperlin L, Niero M, Antón A, Bare J, Boulay AM, Cherubini F, Hauschild MZ, Henderson A, Levasseur A, McKone TE, Michelsen O, i Canals LM, Pfister S, Ridoutt B, Rosenbaum RK, Verones F, Vigon B, Jolliet O (2016) Global guidance on environmental life cycle impact assessment indicators: progress and case study. Int J Life Cycle Assess 21(3):429–442.  https://doi.org/10.1007/s11367-015-1025-1 CrossRefGoogle Scholar
  15. Geyer R, Lindner JP, Stoms DM, Davis FW, Wittstock B (2010) Coupling GIS and LCA for biodiversity assessments of land use. Int J Life Cycle Assess 15(7):692–703.  https://doi.org/10.1007/s11367-010-0199-9 CrossRefGoogle Scholar
  16. Goedkoop M, Spriensma R (2001) Eco-indicator 99, a damage orientedmethodfor life cycle impact assessment: methodology report, 3rd edGoogle Scholar
  17. Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, van Zelm R (2009) ReCiPe: a life cycle impact assessment method which comprises harmonized category indicators at the midpoint and the endpoint levelGoogle Scholar
  18. Goussen B, Price OR, Rendal C, Ashauer R (2016) Integrated presentation of ecological risk from multiple stressors. Sci Rep 6(1).  https://doi.org/10.1038/srep36004
  19. Hanafiah MM, Xenopoulos MA, Pfister S, Leuven RSEW, Huijbregts MAJ (2011) Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction. Environ Sci Technol 45(12):5272–5278.  https://doi.org/10.1021/es1039634 CrossRefGoogle Scholar
  20. Hellweg S, Mila i, Canals L (2014) Emerging approaches, challenges and opportunities in life cycle assessment. Science 344(6188):1109–1113.  https://doi.org/10.1126/science.1248361 CrossRefGoogle Scholar
  21. Hughes JB, Daily GC, Ehrlich PR (1997) Population diversity: its extent and extinction. Science 278(5338):689–692.  https://doi.org/10.1126/science.278.5338.689 CrossRefGoogle Scholar
  22. Huijbregts M, Hellweg S, Hertwich E (2011) Do we need a paradigm shift in life cycle impact assessment? Environ Sci Technol 45(9):3833–3834.  https://doi.org/10.1021/es200918b CrossRefGoogle Scholar
  23. Huijbregts M et al (2016) ReCiPe 2016: a harmonized life cycle impact assessment method at midpoint and endpoint levelGoogle Scholar
  24. IPPC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Core writing team, R.K. Pachaurl and L.A. Meyer (eds)Google Scholar
  25. Itsubo N, Inaba A (2003) A new LCIA method: LIME has been completed. Int J Life Cycle Assess 8(5):305–305.  https://doi.org/10.1007/BF02978923 CrossRefGoogle Scholar
  26. Itsubo N, Inaba A (2012) LIME2 life-cycle impact assessment method based on endpoint modelingGoogle Scholar
  27. Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8(6):324–330.  https://doi.org/10.1007/BF02978505 CrossRefGoogle Scholar
  28. Jolliet O et al (2014) Global guidance on environmental life cycle impact assessment indicators: findings of the scoping phase. Int J Life Cycle Assess 19(4):962–967.  https://doi.org/10.1007/s11367-014-0703-8 CrossRefGoogle Scholar
  29. Kier G, Kreft H, Lee TM, Jetz W, Ibisch PL, Nowicki C, Mutke J, Barthlott W (2009) A global assessment of endemism and species richness across island and mainland regions. Proc Natl Acad Sci U S A 106(23):9322–9327.  https://doi.org/10.1073/pnas.0810306106 CrossRefGoogle Scholar
  30. Koellner T, de Baan L, Beck T, Brandão M, Civit B, Margni M, i Canals LM, Saad R, de Souza DM, Müller-Wenk R (2013) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18(6):1188–1202.  https://doi.org/10.1007/s11367-013-0579-z CrossRefGoogle Scholar
  31. Mace GM, Reyers B, Alkemade R, Biggs R, Chapin FS III, Cornell SE, Díaz S, Jennings S, Leadley P, Mumby PJ, Purvis A, Scholes RJ, Seddon AWR, Solan M, Steffen W, Woodward G (2014) Approaches to defining a planetary boundary for biodiversity. Glob Environ Change 28:289–297.  https://doi.org/10.1016/j.gloenvcha.2014.07.009 CrossRefGoogle Scholar
  32. Maia De Souza D, Flynn DFB, Declerck F, Rosenbaum RK, De Melo Lisboa H, Koellner T (2013) Land use impacts on biodiversity in LCA: proposal of characterization factors based on functional diversity. Int J Life Cycle Assess 18(6):1231–1242.  https://doi.org/10.1007/s11367-013-0578-0 CrossRefGoogle Scholar
  33. Maia de Souza D, Teixeira RFM, Ostermann OP (2015) Assessing biodiversity loss due to land use with life cycle assessment: are we there yet? Glob Chang Biol 21(1):32–47.  https://doi.org/10.1111/gcb.12709 CrossRefGoogle Scholar
  34. Maire E, Grenouillet G, Brosse S, Villéger S (2015) How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob Ecol and Biogeogr 24(6):728–740.  https://doi.org/10.1111/geb.12299 CrossRefGoogle Scholar
  35. McGill BJ, Dornelas M, Gotelli NJ, Magurran AE (2015) Fifteen forms of biodiversity trend in the anthropocene. Trends Ecol Evolut 30(2):104–113.  https://doi.org/10.1016/j.tree.2014.11.006 CrossRefGoogle Scholar
  36. Michelsen O (2008) Assessment of land use impact on biodiversity: proposal of a new methodology exemplified with forestry operations in Norway. Int J Life Cycle Assess 13:22–31Google Scholar
  37. Michelsen O, Lindner JP (2015) Why include impacts on biodiversity from land use in LCIA and how to select useful indicators? Sustainability (Switzerland) 7(5):6278–6302.  https://doi.org/10.3390/su7056278 CrossRefGoogle Scholar
  38. Miraldo A, Li S, Borregaard MK, Florez-Rodriguez A, Gopalakrishnan S, Rizvanovic M, Wang Z, Rahbek C, Marske KA, Nogues-Bravo D (2016) An anthropocene map of genetic diversity. Science 353(6307):1532–1535.  https://doi.org/10.1126/science.aaf4381 CrossRefGoogle Scholar
  39. Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24(4):867–876.  https://doi.org/10.1111/j.1365-2435.2010.01695.x CrossRefGoogle Scholar
  40. Müller-Wenk R, Brandäo M (2010) Climatic impact of land use in LCA-carbon transfers between vegetation/soil and air. Int J Life Cycle Assess 15(2):172–182.  https://doi.org/10.1007/s11367-009-0144-y CrossRefGoogle Scholar
  41. Mumby PJ, Chollett I, Bozec YM, Wolff NH (2014) Ecological resilience, robustness and vulnerability: how do these concepts benefit ecosystem management? Curr Opin Environ Sustain 7:22–27.  https://doi.org/10.1016/j.cosust.2013.11.021 CrossRefGoogle Scholar
  42. Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4(4):355–364.  https://doi.org/10.1111/j.1523-1739.1990.tb00309.x CrossRefGoogle Scholar
  43. Paetzold A, Warren PH, Maltby LL (2010) A framework for assessing ecological quality based on ecosystem services. Ecol Complex 7(3):273–281.  https://doi.org/10.1016/j.ecocom.2009.11.003 CrossRefGoogle Scholar
  44. Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9(6):741–758.  https://doi.org/10.1111/j.1461-0248.2006.00924.x CrossRefGoogle Scholar
  45. Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43(11):4098–4104.  https://doi.org/10.1021/es802423e CrossRefGoogle Scholar
  46. Posthuma L, de Zwart D (2012) Predicted mixture toxic pressure relates to observed fraction of benthic macrofauna species impacted by contaminant mixtures. Environ Toxicol Chem 31(9):2175–2188.  https://doi.org/10.1002/etc.1923 CrossRefGoogle Scholar
  47. Posthuma L, De Zwart D (2014) Species sensitivity distributions. In: Encyclopedia of toxicology, 3rd edition. Elsevier Inc. Academic Press, pp 363–368.  https://doi.org/10.1016/B978-0-12-386454-3.00580-7
  48. Posthuma L, Suter GWI, Traas TP (2002) Species sensitivity distributions in ecotoxicology. CRC-Press, Boca Raton, Florida, USAGoogle Scholar
  49. Rosenbaum R (2015) Chapter 8: Ecotoxicity. In: Hauschild M, Huijbregts M (eds) Life cycle impact assessment. Springer, Dordrecht.  https://doi.org/10.1007/978-94-017-9744-3 CrossRefGoogle Scholar
  50. Schipper AM, Posthuma L, De Zwart D, Huijbregts MAJ (2014) Deriving field-based species sensitivity distributions (f-SSDs) from stacked species distribution models (S-SDMs). Environ Sci Technol 48(24):14464–14471.  https://doi.org/10.1021/es503223k CrossRefGoogle Scholar
  51. Stoddard JL, Larsen DP, Hawkins CP, Johnson RK, Norris RH (2006) Setting expectations for the ecological condition of streams: the concept of reference condition. Ecol Appl 16(4):1267–1276.  https://doi.org/10.1890/1051-0761(2006)016[1267:SEFTEC]2.0.CO;2 CrossRefGoogle Scholar
  52. Struijs J, Beusen A, De Zwart D, Huijbregts M (2011) Characterization factors for inland water eutrophication at the damage level in life cycle impact assessment. Int J Life Cycle Assess 16(1):59–64.  https://doi.org/10.1007/s11367-010-0232-z CrossRefGoogle Scholar
  53. Taelman SE, Schaubroeck T, De Meester S, Boone L, Dewulf J (2016) Accounting for land use in life cycle assessment: the value of NPP as a proxy indicator to assess land use impacts on ecosystems. Sci Total Environ 550:143–156.  https://doi.org/10.1016/j.scitotenv.2016.01.055 CrossRefGoogle Scholar
  54. Teixeira RFM, De Souza DM, Curran MP, Antón A, Michelsen O, Milá I, Canals L (2016) Towards consensus on land use impacts on biodiversity in LCA: UNEP/SETAC life cycle initiative preliminary recommendations based on expert contributions. J Clean Prod 112:4283–4287.  https://doi.org/10.1016/j.jclepro.2015.07.118 CrossRefGoogle Scholar
  55. Tendall DM, Hellweg S, Pfister S, Huijbregts MAJ, Gaillard G (2014) Impacts of river water consumption on aquatic biodiversity in life cycle assessment-a proposed method, and a case study for Europe. Environ Sci Technol 48(6):3236–3244.  https://doi.org/10.1021/es4048686 CrossRefGoogle Scholar
  56. Valiente-Banuet A, Aizen MA, Alcántara JM, Arroyo J, Cocucci A, Galetti M, García MB, García D, Gómez JM, Jordano P, Medel R, Navarro L, Obeso JR, Oviedo R, Ramírez N, Rey PJ, Traveset A, Verdú M, Zamora R (2015) Beyond species loss: the extinction of ecological interactions in a changing world. Funct Ecol 29(3):299–307.  https://doi.org/10.1111/1365-2435.12356 CrossRefGoogle Scholar
  57. van Straalen NM, Denneman CAJ (1989) Ecotoxicological evaluation of soil quality criteria. Ecotoxicol Environ Saf 18(3):241–251.  https://doi.org/10.1016/0147-6513(89)90018-3 CrossRefGoogle Scholar
  58. Van Zelm R, Huijbregts MAJ (2013) Quantifying the trade-off between parameter and model structure uncertainty in life cycle impact assessment. Environ Sci Technol 47(16):9274–9280.  https://doi.org/10.1021/es305107s CrossRefGoogle Scholar
  59. Verones F, Bare J, Bulle C, Frischknecht R, Hauschild M, Hellweg S, Henderson A, Jolliet O, Laurent A, Liao X, Lindner JP, Maia de Souza D, Michelsen O, Patouillard L, Pfister S, Posthuma L, Prado V, Ridoutt B, Rosenbaum RK, Sala S, Ugaya C, Vieira M, Fantke P (2017) LCIA framework and cross-cutting issues guidance within the UNEP-SETAC life cycle initiative. J Clean Prod 161:957–967.  https://doi.org/10.1016/j.jclepro.2017.05.206 CrossRefGoogle Scholar
  60. Verones F, Hanafiah MM, Pfister S, Huijbregts MAJ, Pelletier GJ, Koehler A (2010) Characterization factors for thermal pollution in freshwater aquatic environments. Environ Sci Technol 44(24):9364–9369.  https://doi.org/10.1021/es102260c CrossRefGoogle Scholar
  61. Verones F, Saner D, Pfister S, Baisero D, Rondinini C, Hellweg S (2013) Effects of consumptive water use on biodiversity in wetlands of international importance. Environ Sci Technol 47(21):12248–12257.  https://doi.org/10.1021/es403635j CrossRefGoogle Scholar
  62. Verones F, Huijbregts MAJ, Chaudhary A, De Baan L, Koellner T, Hellweg S (2015) Harmonizing the assessment of biodiversity effects from land and water use within LCA. Environ Sci Technol 49(6):3584–3592.  https://doi.org/10.1021/es504995r CrossRefGoogle Scholar
  63. Verones F, Henderson AD, Laurent A, Ridoutt B, Ugaya C, Hellweg S (2017) Global guidance for life cycle impact assessment indicators. Chapter 2 LCIA framework and modelling guidance [TF 1 crosscutting issues]. vol 1Google Scholar
  64. Zijp MC, Huijbregts MAJ, Schipper AM, Mulder C, Posthuma L (2017) Identification and ranking of environmental threats with ecosystem vulnerability distributions. Sci Rep 7(1):9298.  https://doi.org/10.1038/s41598-017-09573-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • John S. Woods
    • 1
  • Mattia Damiani
    • 2
  • Peter Fantke
    • 3
  • Andrew D. Henderson
    • 4
    • 5
  • John M. Johnston
    • 6
  • Jane Bare
    • 7
  • Serenella Sala
    • 8
  • Danielle Maia de Souza
    • 9
  • Stephan Pfister
    • 10
  • Leo Posthuma
    • 11
    • 12
  • Ralph K. Rosenbaum
    • 2
  • Francesca Verones
    • 1
  1. 1.Industrial Ecology ProgrammeNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.ITAP, Irstea, Montpellier SupAgro, Univ MontpellierELSA Research Group and ELSA-PACT Industrial ChairMontpellierFrance
  3. 3.Division for Quantitative Sustainability Assessment, Department of Management EngineeringTechnical University of DenmarkKgs. LyngbyDenmark
  4. 4.University of Texas School of Public HealthAustinUSA
  5. 5.Noblis, Inc.San AntonioUSA
  6. 6.US EPA, Office of Research and DevelopmentNational Exposure Research LaboratoryAthensUSA
  7. 7.US EPA, Office of Research and DevelopmentNational Risk Management Research LaboratoryCincinnatiUSA
  8. 8.European Commission, Joint Research Centre, Directorate D: Sustainable Resource, Bioeconomy unitIspraItaly
  9. 9.Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada
  10. 10.ETH ZurichInstitute of Environmental EngineeringZürichSwitzerland
  11. 11.RIVM (Dutch National Institute for Public Health and the Environment)Centre for Sustainability, Environment and HealthBilthoventhe Netherlands
  12. 12.Department of Environmental Science, Institute for Water and Wetland ResearchRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations