Salinisation impacts in life cycle assessment: a review of challenges and options towards their consistent integration

  • Sandra Payen
  • Claudine Basset-Mens
  • Montserrat Núñez
  • Stéphane Follain
  • Olivier Grünberger
  • Serge Marlet
  • Sylvain Perret
  • Philippe Roux



Salinisation is a threat not only to arable land but also to freshwater resources. Nevertheless, salinisation impacts have been rarely and only partially included in life cycle assessment (LCA) so far. The objectives of this review paper were to give a comprehensive overview of salinisation mechanisms due to human interventions, analyse the completeness, relevance and scientific robustness of existing published methods addressing salinisation in LCA and provide recommendations towards a comprehensive integration of salinisation within the impact modelling frameworks in LCA.


First, with the support of salinisation experts and related literature, we highlighted multiple causes of soil and water salinisation and presented induced effects on human health, ecosystems and resources. Second, existing life cycle impact assessment (LCIA) methods addressing salinisation were analysed against the International Reference Life Cycle Data System analysis grid of the European Commission. Third, adopting a holistic approach, the modelling options for salinisation impacts were analysed in agreement with up-to-date LCIA frameworks and models.

Results and discussion

We proposed a categorisation of salinisation processes in four main types based on salinisation determinism: land use change, irrigation, brine disposal and overuse of a water body. For each salinisation type, key human management and biophysical factors involved were identified. Although the existing methods addressing salinisation in LCA are important and relevant contributions, they are often incomplete with regards to both the salinisation pathways they address and their geographical validity. Thus, there is a lack of a consistent framework for salinisation impact assessment in LCA. In analysing existing LCIA models, we discussed the inventory and impact assessment boundary options. The land use/land use change framework represents a good basis for the integration of salinisation impacts due to a land use change but should be completed to account for off-site impacts. Conversely, the land use/land use change framework is not appropriate to model salinisation due to irrigation, overuse of a water body and brine disposal. For all salinisation pathways, a bottom-up approach describing the environmental mechanisms (fate, exposure and effect) is recommended rather than an empirical or top-down approach because (i) salts and water are mobile and theirs effects are interconnected; (ii) water and soil characteristics vary greatly spatially; (iii) this approach allows the evaluation of both on- and off-site impacts and (iv) it is the best way to discriminate systems and support a reliable eco-design.


This paper highlights the importance of including salinisation impacts in LCA. Much research effort is still required to include salinisation impacts in a global, consistent and operational manner in LCA, and this paper provides the basis for future methodological developments.


Irrigation Land use change Life cycle impact assessment Life cycle inventory Salinisation Soil Resource Water 



We gratefully acknowledge the financial support of ADEME (Agence de l’Environnement et de la Maitrise de l’Energie) and Cirad (Centre de coopération internationale en recherche agronomique pour le développement) and the partners in the Industrial Chair for Life Cycle Sustainability Assessment ELSA-PACT (a research project of ELSA—Environmental Life Cycle and Sustainability Assessment): Suez Environment, Société du Canal de Provence (SCP), Compagnie d'aménagement du Bas-Rhône et du Languedoc (BRL), Val d’Orbieu—UCCOAR, EVEA, ANR, IRSTEA, Montpellier SupAgro, École des Mines d’Alès, CIRAD, ONEMA, ADEME, and the Region Languedoc—Roussillon.

Supplementary material

11367_2016_1040_MOESM1_ESM.docx (49 kb)
ESM 1 (DOCX 49 kb)


  1. Amores MJ, Verones F, Raptis C, Juraske R, Pfister S, Stoessel F, Antón A, Castells F, Hellweg S (2013) Biodiversity impacts from salinity increase in a coastal wetland. Environ Sci Technol 47:6384–6392Google Scholar
  2. Antón A, Torrellas M, Núñez M, Sevigné E, Amores MJ, Muñoz P, Montero JI (2014) Improvement of agricultural life cycle assessment studies through spatial differentiation and new impact categories: case study on greenhouse tomato production. Environ Sci Technol 48:9454–9462CrossRefGoogle Scholar
  3. Aragüés R, Urdanoz V, Çetin M, Kirda C, Daghari H, Ltifi W, Lahlou M, Douaik A (2011) Soil salinity related to physical soil characteristics and irrigation management in four Mediterranean irrigation districts. Agric Water Manag 98:959–966CrossRefGoogle Scholar
  4. Bartl K, Verones F, Hellweg S (2012) Life cycle assessment based evaluation of regional impacts from agricultural production at the Peruvian coast. Environ Sci Technol 46:9872–9880Google Scholar
  5. Bastiaanssen WGM, Allen RG, Droogers P, D’Urso G, Steduto P (2007) Twenty-five years modeling irrigated and drained soils: state of the art. Agric Water Manag 92:111–125CrossRefGoogle Scholar
  6. Beatty SJ, Morgan DL, Rashnavadi M, Lymbery AJ (2011) Salinity tolerances of endemic freshwater fishes of south-western Australia: implications for conservation in a biodiversity hotspot. Mar Freshw Res 62:91–100CrossRefGoogle Scholar
  7. Beck T, Bos U, Wittstock B, Baitz M, Fischer M, Seldbauer K (2010) LANCA—Land Use Indicator Value Calculation in Life Cycle Assessment. Fraunhofer, Stuttgart, 67 pp Google Scholar
  8. Black AL, Brown PL, Siddoway FH (1981) Dryland cropping strategies for efficient water-use to control saline seeps in the northern great plains, USA. Agric Water Manag 4:295–311CrossRefGoogle Scholar
  9. Boman BJ, Stover EW (2012) Managing Salinity in Florida Citrus. University of Florida, 9pp.
  10. Bouchaou L, Michelot JL, Vengosh A, Hsissou Y, Qurtobi M, Gaye CB, Bullen TD, Zuppi GM (2008) Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss–Massa aquifer, southwest of Morocco. J Hydrol 352:267–287CrossRefGoogle Scholar
  11. Boulay A-M, Bouchard C, Bulle C, Deschênes L, Margni M (2011a) Categorizing water for LCA inventory. Int J Life Cycle Assess 16:639–651Google Scholar
  12. Boulay A-M, Bulle C, Bayart J-B, Deschênes L, Margni M (2011b) Regional characterization of freshwater Use in LCA: modeling direct impacts on human health. Environ Sci Technol 45:8948–8957Google Scholar
  13. Brandão M, Milà i Canals L (2013) Global characterisation factors to assess land use impacts on biotic production. Int J Life Cycle Assess 18:1243–1252CrossRefGoogle Scholar
  14. Corwin DL, Lesch SM (2005) Apparent soil electrical conductivity measurements in agriculture. Comput Electron Agric 46:11–43CrossRefGoogle Scholar
  15. Cucurachi S, Heijungs R, Peijnenburg WJGM, Bolte JFB, de Snoo GR (2014) A framework for deciding on the inclusion of emerging impacts in life cycle impact assessment. J Clean Prod 78:152–163CrossRefGoogle Scholar
  16. D’Odorico P, Bhattachan A, Davis KF, Ravi S, Runyan CW (2013) Global desertification: drivers and feedbacks. Adv Water Resour 51:326–344CrossRefGoogle Scholar
  17. De Schryver AM, Humbert S, Huijbregts MAJ (2012) The influence of value choices in life cycle impact assessment of stressors causing human health damage. Int J Life Cycle Assess 18:698–706CrossRefGoogle Scholar
  18. De Schryver AM, van Zelm R, Humbert S, Pfister S, McKone TE, Huijbregts MAJ (2011) Value choices in life cycle impact assessment of stressors causing human health damage. J Ind Ecol 15:796–815CrossRefGoogle Scholar
  19. Dewulf J, Benini L, Mancini L, Sala S, Blengini GA, Ardente F, Recchioni M, Maes J, Pant R, Pennington D (2015) Rethinking the area of protection “natural resources” in life cycle assessment. Environ Sci Technol 49:5310–5317CrossRefGoogle Scholar
  20. Duan R, Fedler CB (2013) Salt management for sustainable degraded water land application under changing climatic conditions. Environ Sci Technol 47:10113–10114Google Scholar
  21. FAO (2011) The state of the world’s land and water resources for food and agriculture (SOLAW) - Managing systems at risk. Food and Agriculture Organization of the United Nations, Rome, Italy and Earthscan, London, UK, 308 ppGoogle Scholar
  22. FAO (2003) World agriculture : towards 2015/2030 - An FAO perspective, EarthscanB. Jelle Bruinsma (eds) Earthscan, London, UK, 444 ppGoogle Scholar
  23. FAO (1985) FAO Irrigation and Drainage Paper No. 29—water quality for agriculture. FAO, Rome, Italy, p 107Google Scholar
  24. Feitz AJ, Lundie S (2002) Soil salinisation: a local life cycle assessment impact category. Int J Life Cycle Assesment 7:244–249CrossRefGoogle Scholar
  25. Finkbeiner M, Ackermann R, Bach V, Berger M, Brankatschk G, Chang Y-J, Grinberg M, Lehmann A, Martínez-Blanco J, Minkov N, Neugebauer S, Scheumann R, Schneider L, Wolf K (2014) Background and future prospects in life cycle assessment. SpringerNetherlands, DordrechtGoogle Scholar
  26. Flowers TJ (1999) Salinisation and horticultural production. Sci Hortic (Amsterdam) 78:1–4Google Scholar
  27. Flowers TJ, Flowers SA (2005) Why does salinity pose such a difficult problem for plant breeders? Agric Water Manag 78:15–24. doi: 10.1016/j.agwat.2005.04.015 CrossRefGoogle Scholar
  28. Friedrich E, Pillay S (2009) Environmental life cycle assessments for water treatment processes—a South African case study of an urban water cycle. Water SA 35:73–84Google Scholar
  29. Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management, and case studies. NSW University Press, Sydney, p 540Google Scholar
  30. Gillis PL (2011) Assessing the toxicity of sodium chloride to the glochidia of freshwater mussels: implications for salinization of surface waters. Environ Pollut 159:1702–1708CrossRefGoogle Scholar
  31. Goedkoop M, Spriensma R (2001) The Eco-indicator99: a damage oriented method for life cycle impact assessment: methodology report., pp 1–144Google Scholar
  32. Gonçalves AMM, Castro BB, Pardal MA, Gonçalves F (2007) Salinity effects on survival and life history of two freshwater cladocerans (Daphnia magna and Daphnia longispina). Ann Limnol - Int J Limnol 43:13–20CrossRefGoogle Scholar
  33. Grierson S, Strezov V, Bengtsson J (2013) Life cycle assessment of a microalgae biomass cultivation, bio-oil extraction and pyrolysis processing regime. Algal Res 2:299–311CrossRefGoogle Scholar
  34. Grundy M, Silburn D, Chamberlain T (2007) A risk framework for preventing salinity. Environ Hazards 7:97–105CrossRefGoogle Scholar
  35. Hammecker C, Maeght J-L, Grünberger O, Siltacho S, Srisruk K, Noble A (2012) Quantification and modelling of water flow in rain-fed paddy fields in NE Thailand: evidence of soil salinization under submerged conditions by artesian groundwater. J Hydrol 456–457:68–78CrossRefGoogle Scholar
  36. Hauschild MZ, Goedkoop M, Guinée J, Heijungs R, Huijbregts M, Jolliet O, Margni M, De Schryver A, Humbert S, Laurent A, Sala S, Pant R (2013) Identifying best existing practice for characterization modeling in life cycle impact assessment. Int J Life Cycle Assess 18:683–697CrossRefGoogle Scholar
  37. Hellweg S, Milà i Canals L (2014) Emerging approaches, challenges and opportunities in life cycle assessment. Science 344:1109–1113CrossRefGoogle Scholar
  38. Henderson AD, Hauschild MZ, Meent D, Huijbregts MAJ, Larsen HF, Margni M, McKone TE, Payet J, Rosenbaum RK, Jolliet O (2011) USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. Int J Life Cycle Assess 16:701–709CrossRefGoogle Scholar
  39. Huijbregts M (2013) A critical view on scientific consensus building in life cycle impact assessment. Int J Life Cycle Assess 19:477–479CrossRefGoogle Scholar
  40. Huijbregts MAJ, Hellweg S, Hertwich E (2011) Do we need a paradigm shift in life cycle impact assessment ? Environ Sci Technol 45:3833–3834CrossRefGoogle Scholar
  41. Jardine A, Speldewinde P, Carver S, Weinstein P (2007) Dryland salinity and ecosystem distress syndrome: human health implications. Ecohealth 4:10–17CrossRefGoogle Scholar
  42. Jolliet O, Frischknecht R, Bare J, Boulay A-M, Bulle C, Fantke P, Gheewala S, Hauschild M, Itsubo N, Margni M, McKone TE, Canals LM, Postuma L, Prado-Lopez V, Ridoutt B, Sonnemann G, Rosenbaum RK, Seager T, Struijs J, van Zelm R, Vigon B, Weisbrod A (2014) Global guidance on environmental life cycle impact assessment indicators: findings of the scoping phase. Int J Life Cycle Assess 19:962–967CrossRefGoogle Scholar
  43. JRC-IES (2011) International reference life cycle data system (ILCD) handbook—recommendations for life cycle impact assessment in the European context. European Commission Joint Research Centre - Institute for Environment and Sustainability, Luxemburg, 159 ppGoogle Scholar
  44. Kim DH, Aldridge KT, Brookes JD, Ganf GG (2013) The effect of salinity on the germination of Ruppia tuberosa and Ruppia megacarpa and implications for the Coorong: a coastal lagoon of southern Australia. Aquat Bot 111:81–88CrossRefGoogle Scholar
  45. Koellner T, Baan L, Beck T, Brandão M, Civit B, Margni M, Canals LM, Saad R, Souza DM, Müller-Wenk R (2013) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18:1188–1202CrossRefGoogle Scholar
  46. Koellner T, Geyer R (2013) Global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18:1185–1187CrossRefGoogle Scholar
  47. Kounina A, Margni M, Bayart J-B, Boulay A-M, Berger M, Bulle C, Frischknecht R, Koehler A, Milà i Canals L, Motoshita M, Núñez M, Peters G, Pfister S, Ridoutt B, van Zelm R, Verones F, Humbert S (2013) Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int J Life Cycle Assess 18:707–721CrossRefGoogle Scholar
  48. Leske T, Buckley C (2003) Towards the development of a salinity impact category for South African environmental life-cycle assessments : part 1—a new impact category. Water SA 29:289–296Google Scholar
  49. Leske T, Buckley C (2004a) Towards the development of a salinity impact category for South African life cycle assessments : Part 2 – A conceptual multimedia environmental fate and effect model. Water SA 30:241–252Google Scholar
  50. Leske T, Buckley C (2004b) Towards the development of a salinity impact category for South African life cycle assessments : Part 3 – Salinity potentials. Water SA 30:253–265Google Scholar
  51. Maas EV, Hoffman GJ (1977) Crop salt tolerance - Current assessment. US Salinity Laboratory - US department of Agriculture. American Society of Civil Engineers Riverside, Calfornia, 42 ppGoogle Scholar
  52. Marlet S, Job J-O (2006) Processus et gestion de la salinité des sols. In: Tiercelin J-R, Vidal A (eds) Traité d’irrigation, seconde edition, Ted & Doc. Lavoisier, Paris, p 1266Google Scholar
  53. Mateo-sagasta J, Burke J (2010) SOLAW Background Thematic Report—TR08 Agriculture and water quality interactions: a global overview. FAO, Rome, Italy, 46 ppGoogle Scholar
  54. Milà i Canals L, Romanyà J, Cowell SJ (2007) Method for assessing impacts on life support functions (LSF) related to the use of “fertile land” in Life Cycle Assessment (LCA). J Clean Prod 15:1426–1440CrossRefGoogle Scholar
  55. Motoshita M, Itsubo N, Inaba A (2011) Development of impact factors on damage to health by infectious diseases caused by domestic water scarcity. Int J Life Cycle Assess 16:65–73CrossRefGoogle Scholar
  56. Muñoz I, Fernández-Alba AR (2008) Reducing the environmental impacts of reverse osmosis desalination by using brackish groundwater resources. Water Res 42:801–811CrossRefGoogle Scholar
  57. Muñoz I, Milà-i-Canals L, Fernández-Alba AR (2010) Life cycle assessment of water supply plans in Mediterranean Spain. J Ind Ecol 14:902–918CrossRefGoogle Scholar
  58. Neitsch SL, Arnold JC, Kiniry JR, Williams JR (2009) Soil & Water Assessment Tool - Theoretical Documentation Texas A & M University System, College Station, Texas, 647ppGoogle Scholar
  59. Núñez M, Antón A, Muñoz P, Rieradevall J (2013) Inclusion of soil erosion impacts in life cycle assessment on a global scale: application to energy crops in Spain. Int J Life Cycle Assess 18:755–767CrossRefGoogle Scholar
  60. Núñez M, Civit B, Muñoz P, Arena AP, Rieradevall J, Antón A (2010) Assessing potential desertification environmental impact in life cycle assessment. Int J Life Cycle Assess 15:67–78CrossRefGoogle Scholar
  61. Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43:4098–4104CrossRefGoogle Scholar
  62. Qadir M, Schubert S, Ghafoor A, Murtaza G (2001) Amelioration strategies for sodic soils: a review. L Degrad Dev 12:357–386CrossRefGoogle Scholar
  63. Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620. doi: 10.1071/FP09249 CrossRefGoogle Scholar
  64. Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023CrossRefGoogle Scholar
  65. Renouf M, Eady S, Grant T, Grundy M, Brandão M (2014) Representing soil function in agriculture LCA in the Australian context. In: Schenck R, Huizenga D (eds) Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014), 8-10 October 2014, San Francisco, USA. ACLCA, Vashon, WA, USAGoogle Scholar
  66. Rosenbaum RK, Anton A, Bengoa X, Bjørn A, Brain R, Bulle C, Cosme N, Dijkman TJ, Fantke P, Felix M, Geoghegan TS, Gottesbüren B, Hammer C, Humbert S, Jolliet O, Juraske R, Lewis F, Maxime D, Nemecek T, Payet J, Räsänen K, Roux P, Schau EM, Sourisseau S, van Zelm R, von Streit B, Wallman M (2015) The Glasgow consensus on the delineation between pesticide emission inventory and impact assessment for LCA. Int J Life Cycle Assess 20:765–776CrossRefGoogle Scholar
  67. Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone TE, Payet J, Schuhmacher M, Meent D, Hauschild MZ (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546CrossRefGoogle Scholar
  68. Rozema J, Flowers T (2008) Crops for a salinized world. Science 322:1478–1480CrossRefGoogle Scholar
  69. Saad R, Koellner T, Margni M (2013) Land use impacts on freshwater regulation, erosion regulation, and water purification: a spatial approach for a global scale level. Int J Life Cycle Assess 18:1253–1264CrossRefGoogle Scholar
  70. Saad R, Margni M, Koellner T, Wittstock B, Deschênes L (2011) Assessment of land use impacts on soil ecological functions: development of spatially differentiated characterization factors within a Canadian context. Int J Life Cycle Assess 16:198–211CrossRefGoogle Scholar
  71. Sánchez AS, Nogueira IBR, Kalid RA (2015) Uses of the reject brine from inland desalination for fish farming, Spirulina cultivation, and irrigation of forage shrub and crops. Desalination 364:96–107CrossRefGoogle Scholar
  72. Scanlon BR, Jolly I, Sophocleous M, Zhang L (2007) Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resour Res 43. doi:  10.1029/2006WR005486
  73. Schnoor JL (2013) Salt: the final frontier. Environ Sci Technol 47:2152CrossRefGoogle Scholar
  74. Smedema LK, Shiati K (2002) Irrigation and salinity : a perspective review of the salinity hazards of irrigation development in the arid zone. Irrig Drain Syst 16:161–174CrossRefGoogle Scholar
  75. Sreekanth J, Datta B (2015) Review: simulation-optimization models for the management and monitoring of coastal aquifers. Hydrogeol J 23:1155–1166CrossRefGoogle Scholar
  76. Steduto P, Hsiao TC, Fereres E, Raes D (2012) FAO Irrigation and Drainage Paper No. 66—crop yield response to water. FAO, Rome, Italy, p 505Google Scholar
  77. Suarez DL, Wood JD, Lesch SM (2006) Effect of SAR on water infiltration under a sequential rain–irrigation management system. Agric Water Manag 86:150–164. doi: 10.1016/j.agwat.2006.07.010 CrossRefGoogle Scholar
  78. Tangsubkul N, Beavis P, Moore SJ, Lundie S, Waite TD (2005) Life cycle assessment of water recycling technology. Water Resour Manag 19:521–537CrossRefGoogle Scholar
  79. Udo de Haes, H. A., G. Finnveden, M. Goedkoop, M. Hauschild, E. Hertwich, P. Hofstetter O, Jolliet, W. Klöpffer, W. Krewitt, E. Lindeijer, R. Mueller-Wenk, I. Olsen, D. Pennington, J. Potting BS (2002) Life Cycle Impact Assessment: Striving toward best practices, SETAC press, Pensacola, 272 ppGoogle Scholar
  80. UNESCO (2003) Water for people - water for life. The United Nations World Water Development Report. UNESCO, and Berghahn Books, Paris, France, p 593Google Scholar
  81. USDA (1954) Diagnosis and improvement of saline and alkali soil—USDA Agriculture Handbook 60. United States Salinity Laboratory Staff, Washington, 160 ppGoogle Scholar
  82. USDA-NRCS USDA (2015) Natural Resources Conservation Services - Water Quality Tests, Units of Measure, and Conversions - Appendix MT-61. Accessed 1 Sep 2015
  83. Van Zelm R, Larrey-Lassalle P, Roux P (2014) Bridging the gap between life cycle inventory and impact assessment for toxicological assessments of pesticides used in crop production. Chemosphere 100:175–181CrossRefGoogle Scholar
  84. Verones F, Pfister S, Hellweg S (2013a) Quantifying Area Changes of Internationally Important Wetlands Due to Water Consumption in LCA. Environ Sci Technol 47:9799–9807Google Scholar
  85. Verones F, Saner D, Pfister S, Baisero D, Rondinini C, Hellweg S (2013b) Effects of Consumptive Water Use on Biodiversity in Wetlands of International Importance. Environ Sci Technol 47:12248–12257Google Scholar
  86. Werner AD, Bakker M, Post VEA, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry DA (2013) Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv Water Resour 51:3–26CrossRefGoogle Scholar
  87. Williams W (2001) Anthropogenic salinisation of inland waters. Hydrobiologia 466:329–337CrossRefGoogle Scholar
  88. Williams WD (1999) Salinisation: a major threat to water resources in the arid and semi-arid regions of the world. Lakes Reserv Res Manag 4:85–91CrossRefGoogle Scholar
  89. Williamson DR, Peck AJ, Turner J V, Arunin S (1989) Groundwater hydrology and salinity in a valley in Northeast Thailand. In: Proceedings of the Symposium held during the Third IAHS Scientific Assembly, Baltimore, MD, May 1989, IAHS Publ. no. 185. Baltimore, pp 147–154Google Scholar
  90. Wood S, Scherr SJ, Sebastian K (2000) Pilot Analysis of Global Ecosystems. International Food Policy Research Institute and World Ressources Institute. Washington, DC, 108 ppGoogle Scholar
  91. World Water Assessment Program (2009) The United Nations World Water Development Report 3: Water in a Changing World. The United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris, France, and Earthscan, London, United Kingdom, 429 ppGoogle Scholar
  92. Yoon SJ, Park GS (2012) Ecotoxicological effects of brine discharge on marine community by seawater desalination. Desalin Water Treat 33:240–247CrossRefGoogle Scholar
  93. Zhou D, Lin Z, Liu L, Zimmermann D (2013a) Assessing secondary soil salinization risk based on the PSR sustainability framework. J Environ Manage 128:642–654Google Scholar
  94. Zhou J, Chang VW-C, Fane AG (2013b) An improved life cycle impact assessment (LCIA) approach for assessing aquatic eco-toxic impact of brine disposal from seawater desalination plants. Desalination 308:233–241Google Scholar
  95. Zhou J, Chang VW-C, Fane AG (2014) Life cycle assessment for desalination: a review on methodology feasibility and reliability. Water Res 61:210–223CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sandra Payen
    • 1
    • 2
  • Claudine Basset-Mens
    • 2
  • Montserrat Núñez
    • 3
  • Stéphane Follain
    • 4
  • Olivier Grünberger
    • 5
  • Serge Marlet
    • 6
  • Sylvain Perret
    • 7
  • Philippe Roux
    • 3
  1. 1.ADEMEAngersFrance
  2. 2.CIRAD, UPR Hortsys, ELSA—Research Group for Environmental Life Cycle Sustainability AssessmentMontpellierFrance
  3. 3.IRSTEA, UMR ITAP, ELSA – Research Group for Environmental Life Cycle Sustainability AssessmentMontpellierFrance
  4. 4.Montpellier SupAgroUMR LISAHMontpellierFrance
  5. 5.IRD, UMR LISAHMontpellierFrance
  6. 6.CIRAD, UMR G-Eau, INRGREFTunisTunisia
  7. 7.CIRAD, UMR G-EauMontpellierFrance

Personalised recommendations